
Solving Ax2 −By2 = N in integers, where

A > 0, B > 0 and D = AB is not a perfect

square and gcd(A, B) = gcd(A, N) = 1.

Keith Matthews

Abstract

This generalises an earlier algorithm of the

author for solving x2 −Dy2 = N .

Remark If D is a perfect square, say D = C2,

then the given equation is equivalent to

A2x2 − C2y2 = AN , which is easily solved.
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Equivalence classes of primitive solutions

of Ax2 − By2 = N.

The identity

(Ax2 −By2)(u2 −Dv2) =

A(xu + yvB)2 −B(uy + Avx)2

shows that a solution (x, y) of Ax2 −By2 = N

and a solution (u, v) of Pell’s equation

u2 −Dv2 = 1, together produce a solution

(x′, y′) = (xu + yvB, uy + Avx)

of Ax′2−By′2 = N . Moreover if gcd(x, y) = 1,

then gcd(x′, y′) = 1.

Note that

Ax′ + y′
√

D = (Ax + y
√

D)(u + v
√

D). (1)

Equation (1) defines an equivalence relation

on the set of all primitive solutions of

Ax2 −By2 = N .
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Attaching a residue class P (mod |N |) to

each equivalence class.

If Ax2 −By2 = N,gcd(x, y) = 1 = gcd(A, N),

then gcd(y, N) = 1.

Hence we can define P,−|N |/2 < P ≤ |N |/2,

by x ≡ yP (mod |N |). Then

Ax2 −By2 ≡ 0 (mod |N |)
Ay2P2 −By2 ≡ 0 (mod |N |)

AP2 −B ≡ 0 (mod |N |)
AP2 ≡ B (mod |N |).
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Primitive solutions (x, y) and (x′, y′) are

equivalent if and only if

Axx′ − yy′B ≡ 0 (mod |N |)
yx′ − xy′ ≡ 0 (mod |N |).

Then (x, y) and (x′, y′) are equivalent if and

only if P ≡ P ′ (mod |N |).

Hence the number of equivalence classes is

finite.
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If (x, y) is a solution for a class C, then (−x, y)

is a solution for the conjugate class C∗.

It can happen that C∗ = C, in which case C is

called an ambiguous class.

The solution (x, y) in a class with least y > 0

is called a fundamental solution.

For an ambiguous class, there are either two

(x, y) and (−x, y) with least y > 0 if x > 0 and

one if x = 0, namely (0,1) and we choose the

one with x ≥ 0.
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Continued fractions of quadratic

irrationalities.

Let ω = P0+
√

D
Q0

= [a0, a1, . . . , ], where

Q0|(P2
0 −D).

Then the n–th complete quotient

xn = [an, an+1, . . . , ] = (Pn +
√

D)/Qn.

There is a simple algorithm for calculating an,

Pn and Qn:

an =
⌊

Pn+
√

D
Qn

⌋
, (2)

Pn+1 = anQn − Pn,

Qn+1 =
D−P2

n+1
Qn

.

We also note the following important identity

G2
n−1 −DB2

n−1 = (−1)nQ0Qn,

where Gn−1 = Q0An−1 − P0Bn−1.

With ω∗ = P0−
√

D
Q0

, we have

G2
n−1 −DB2

n−1 = (−1)n+1Q0Qn.

6



Necessary conditions for solubility of

Ax2 − By2 = N .

Suppose Ax2 −By2 = N,gcd(x, y) = 1 =

gcd(A, B) = gcd(A, N), A > 0, B > 0, y > 0.

We have x ≡ yP (mod |N |) and

AP2 ≡ B (mod |N |). Also the symmetry

(x, y) ↔ (−x, y) allows us to assume

0 ≤ P ≤ |N |/2.

Let x = Py + |N |X. Then

Substituting for x = Py + |N |X in the

equation Ax2 −By2 = N gives

A|N |X2 + 2APXy + (AP2−B)
|N | y2 = N

|N |.
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(i) If x ≥ 0, then

(a) X/y is a convergent An−1/Bn−1 to

ω = −AP+
√

D
A|N | ,

(b) (x, y) = (Gn−1/A, Bn−1),

(c) Qn = (−1)n N
|N |.

(ii) If x < 0, then

(a) X/y is a convergent Am−1/Bm−1 to

ω∗ = −AP−
√

D
A|N | ,

(b) (x, y) = (Gm−1/A, Bm−1),

(c) Qm = (−1)m+1 N
|N |.
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We prove (i) (a) and (ii) (a) by using the

following extension of Theorem 172 in Hardy

and Wright’s book:

Lemma. If ω = Uζ+R
V ζ+S , where ζ > 1 and

U, V, R, S are integers such that V > 0, S > 0

and US − V R = ±1, or S = 0 and V = R = 1,

then U/V is a convergent to ω.
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We apply the Lemma to the integer matrix[
U R
V S

]
=

 X −APx+By
|N |

y Ax

 .

The matrix has determinant

∆ = XAx− y
(−APx + By)

|N |

=
Ax(x− Py) + APxy −By2

|N |

=
Ax2 −By2

|N |
= ±1.

Also if ζ =
√

D and ω = (−AP +
√

D)/A|N |, it

is easy to verify that ω = Uζ+R
V ζ+S and that

S = 0 implies V = R = 1.
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The lemma now implies that U/V = X/y is a

convergent An−1/Bn−1 to ω. Also

Gn−1 = Q0An−1 − P0Bn−1

= (A|N |)X − (−AP )y = Ax.

Hence

N = Ax2 −By2 =
G2

n−1

A
−BB2

n−1

=
G2

n−1 −DB2
n−1

A

=
(−1)nA|N |Qn

A
= (−1)n|N |Qn.

Hence Qn = (−1)nN/|N |.
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If x < 0, then ω∗ = −X
√

D+R
−y
√

D+x
= X

√
D−R

y
√

D−x
and

X/y is a convergent Am−1/Bm−1 to ω∗.

Again, Gm−1 = Ax and Qm = (−1)m+1N/|N |.
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Refining the necessary condition for

solubility

Lemma. An equivalence class of solutions

contains an (x, y) with x ≥ 0 and y > 0.

Proof. Let (x0, y0) be fundamental solution

of a class C. Then if x0 ≥ 0 we are finished.

So suppose x0 < 0 and let u + v
√

D,

u > 0, v > 0, be a solution of Pell’s equation.

Define X and Y by

X + Y
√

D = (x0 + y0
√

D)(u + v
√

D).

Then it can be shown that

(a) X < 0 and Y < 0 if N > 0,

(b) X > 0 and Y > 0 if N < 0.

Hence C contains a solution (X ′, Y ′) with

X ′ > 0 and Y ′ > 0.

Hence a necessary condition for solubility of

Ax2 −By2 = N is that Qn = (−1)nN/|N |
holds for some n in the continued fraction for

ω = −AP+
√

D
A|N | .
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Limiting the search range when testing

for necessity

Let ω = [a0, . . . , at, at+1, . . . , at+l].

Then by periodicity of the Qi, we can assume

that Qn = (−1)nN/|N | holds for some

n ≤ t + l if l is even, or n ≤ t + 2l if l is odd.
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Sufficiency.

Suppose AP2 ≡ B (mod |N |), 0 ≤ P ≤ |N |/2.

(i) Let ω = −AP+
√

D
A|N | and suppose

Qn = (−1)nN/|N | for some minimal n ≥ 1.

Then

Gn−1 = Q0An−1 − P0Bn−1

= A|N |An−1 + APBn−1

= A(|N |An−1 + PBn−1).

Also

G2
n−1 −DB2

n−1 = (−1)nQ0Qn

= (−1)n(A|N |)(−1)nN/|N |
= AN.

Hence A(Gn−1/A)2 −BB2
n−1 = N and the

equation Ax2 −By2 = N has the solution

(|N |An−1 + PBn−1, Bn−1).
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Similarly (ii): with ω∗ = −AP−
√

D
A|N | and

Qm = (−1)m+1N/|N | for some minimal

m ≥ 1, the equation Ax2 −By2 = N has the

solution (|N |Am−1 + PBm−1, Bm−1).

Then the solution (x, y) in (i) and (ii) with

smaller y, will be the fundamental solution for

the class P .
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Primitivity of solutions

The fact that gcd (Gn−1/A, Bn−1) = 1 if

Qn = ±1, follows from the next result.

Theorem. Let

Ax2 −By2 = N, AP2 ≡ B (mod Q) and

x ≡ Py (mod Q), where Q = |N |. Then

gcd(x, y) = 1.

Proof. (Inspired by Peter Hackman’s.)

APx−By ≡ (AP2 −B)y ≡ 0 (mod Q)

so APx−By = aQ. (1)

Also − Py + x = bQ. (2)

Then adding y times (1) and Ax times (2)

gives:

(ay + bxA)Q = −By2 + Ax2 = N.

Hence ay + bxA = N/Q = ±1 and

gcd(x, y) = 1.
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An example: 4x2 − 7y2 = −111.

The solutions of 4P2 ≡ 7 (mod 111) satisfying

0 ≤ P ≤ 55 are P = 14 and P = 23.

(a) P = 14:

(i) ω = −AP+
√

D
A|N | = −56+

√
28

444 =

[−1,1,7,1,3,10,3,2] and

Q5 = 1 = (−1)5N/|N |, A4/B4 = −4/35.

Then

G4/A = |N |A4+PB4 = 111∗−4+14∗35 = 46

and (G4/A, B4) = (46,35) is a solution.

(ii) ω∗ = −AP−
√

D
A|N | = −56−

√
28

444 =

[−1,1,6,4,10,3, ,2,3] and

Q4 = 1 = (−1)(4+1)N/|N |, A3/B3 = −4/29.

Then

G3/A = |N |A3+PB3 = 111∗−4+14∗29 = −38

and (G3/A, B3) = (−38,29) is a solution.

Hence (−38,29) is the fundamental solution

for class P = 14.
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(b) P = 23:

(i) ω = −AP+
√

D
A|N | = −92+

√
28

444 =

[−1,1,4,8,3,2,3,10] and

Q3 = 1 = (−1)3N/|N |, A2/B2 = −1/5.

Then

G2/A = |N |A2 + PB2 = 111 ∗ −1 + 23 ∗ 5 = 4

and (G2/A, B2) = (4,5) is a solution.

(ii) ω∗ = −AP−
√

D
A|N | = −92−

√
28

444 =

[−1,1,3,1,1,3,2,3,10] and

Q4 = 1 = (−1)(4+1)N/|N |, A3/B3 = −1/5.

Then

G3/A = |N |A3 + PB3 = 111 ∗ −1 + 23 ∗ 5 = 4

and (G3/A, B3) = (4,5) is a solution. Hence

(4,5) is the fundamental solution for class

P = 23.
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Now the fundamental solution of

x2 − 28y2 = 1 is η = 127 + 24
√

28.

Hence the complete solution for

4x2 − 7y2 = −111 is given by

x + y
√

28 = ±ηn(±38 + 29
√

28) and

±ηn(±4 + 5
√

28), n ∈ Z.

13th September 2007
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