Solving $Ax^2 - By^2 = N$ in integers, where A > 0, B > 0 and D = AB is not a perfect square and gcd(A, B) = gcd(A, N) = 1.

Keith Matthews

Abstract

This generalises an earlier algorithm of the author for solving $x^2 - Dy^2 = N$.

Remark If D is a perfect square, say $D = C^2$, then the given equation is equivalent to $A^2x^2 - C^2y^2 = AN$, which is easily solved. Equivalence classes of primitive solutions of $Ax^2 - By^2 = N$.

The identity

$$(Ax2 - By2)(u2 - Dv2) =$$

A(xu + yvB)² - B(uy + Avx)²

shows that a solution (x, y) of $Ax^2 - By^2 = N$ and a solution (u, v) of Pell's equation $u^2 - Dv^2 = 1$, together produce a solution

$$(x', y') = (xu + yvB, uy + Avx)$$

of $Ax'^2 - By'^2 = N$. Moreover if gcd(x, y) = 1, then gcd(x', y') = 1.

Note that $Ax' + y'\sqrt{D} = (Ax + y\sqrt{D})(u + v\sqrt{D}).$ (1) Equation (1) defines an equivalence relation

on the set of all primitive solutions of $Ax^2 - By^2 = N$.

Attaching a residue class $P \pmod{|N|}$ to each equivalence class.

If $Ax^2 - By^2 = N$, gcd(x, y) = 1 = gcd(A, N), then gcd(y, N) = 1.

Hence we can define $P, -|N|/2 < P \le |N|/2$, by $x \equiv yP \pmod{|N|}$. Then

$$Ax^{2} - By^{2} \equiv 0 \pmod{|N|}$$
$$Ay^{2}P^{2} - By^{2} \equiv 0 \pmod{|N|}$$
$$AP^{2} - B \equiv 0 \pmod{|N|}$$
$$AP^{2} \equiv B \pmod{|N|}.$$

Primitive solutions (x, y) and (x', y') are equivalent if and only if

$$Axx' - yy'B \equiv 0 \pmod{|N|}$$
$$yx' - xy' \equiv 0 \pmod{|N|}.$$

Then (x, y) and (x', y') are equivalent if and only if $P \equiv P' \pmod{|N|}$.

Hence the number of equivalence classes is finite.

If (x, y) is a solution for a class C, then (-x, y) is a solution for the *conjugate* class C^* .

It can happen that $C^* = C$, in which case C is called an *ambiguous* class.

The solution (x, y) in a class with least y > 0 is called a *fundamental* solution.

For an ambiguous class, there are either two (x, y) and (-x, y) with least y > 0 if x > 0 and one if x = 0, namely (0, 1) and we choose the one with $x \ge 0$.

Continued fractions of quadratic irrationalities.

Let $\omega = \frac{P_0 + \sqrt{D}}{Q_0} = [a_0, a_1, \dots,]$, where $Q_0 | (P_0^2 - D).$

Then the *n*-th complete quotient $x_n = [a_n, a_{n+1}, \dots,] = (P_n + \sqrt{D})/Q_n.$

There is a simple algorithm for calculating a_n , P_n and Q_n :

$$a_n = \left\lfloor \frac{P_n + \sqrt{D}}{Q_n} \right\rfloor, \quad (2)$$
$$P_{n+1} = a_n Q_n - P_n,$$
$$Q_{n+1} = \frac{D - P_{n+1}^2}{Q_n}.$$

We also note the following important identity

$$G_{n-1}^2 - DB_{n-1}^2 = (-1)^n Q_0 Q_n,$$

where $G_{n-1} = Q_0 A_{n-1} - P_0 B_{n-1}.$
With $\omega^* = \frac{P_0 - \sqrt{D}}{Q_0}$, we have
 $G_{n-1}^2 - DB_{n-1}^2 = (-1)^{n+1} Q_0 Q_n.$

Necessary conditions for solubility of $Ax^2 - By^2 = N$.

Suppose $Ax^2 - By^2 = N$, gcd(x, y) = 1 = gcd(A, B) = gcd(A, N), A > 0, B > 0, y > 0.

We have $x \equiv yP \pmod{|N|}$ and $AP^2 \equiv B \pmod{|N|}$. Also the symmetry $(x, y) \leftrightarrow (-x, y)$ allows us to assume $0 \leq P \leq |N|/2$.

Let x = Py + |N|X. Then

Substituting for x = Py + |N|X in the equation $Ax^2 - By^2 = N$ gives

 $A|N|X^{2} + 2APXy + \frac{(AP^{2}-B)}{|N|}y^{2} = \frac{N}{|N|}.$

(i) If
$$x \ge 0$$
, then
(a) X/y is a convergent A_{n-1}/B_{n-1} to
 $\omega = \frac{-AP + \sqrt{D}}{A|N|}$,
(b) $(x, y) = (G_{n-1}/A, B_{n-1})$,
(c) $Q_n = (-1)^n \frac{N}{|N|}$.

(ii) If
$$x < 0$$
, then
(a) X/y is a convergent A_{m-1}/B_{m-1} to
 $\omega^* = \frac{-AP - \sqrt{D}}{A|N|}$,
(b) $(x, y) = (G_{m-1}/A, B_{m-1})$,
(c) $Q_m = (-1)^{m+1} \frac{N}{|N|}$.

We prove (i) (a) and (ii) (a) by using the following extension of Theorem 172 in Hardy and Wright's book:

Lemma. If $\omega = \frac{U\zeta + R}{V\zeta + S}$, where $\zeta > 1$ and U, V, R, S are integers such that V > 0, S > 0 and $US - VR = \pm 1$, or S = 0 and V = R = 1, then U/V is a convergent to ω .

We apply the Lemma to the integer matrix

$$\begin{bmatrix} U & R \\ V & S \end{bmatrix} = \begin{bmatrix} X & \frac{-APx + By}{|N|} \\ y & Ax \end{bmatrix}$$

The matrix has determinant

$$\Delta = XAx - y \frac{(-APx + By)}{|N|}$$
$$= \frac{Ax(x - Py) + APxy - By^2}{|N|}$$
$$= \frac{Ax^2 - By^2}{|N|}$$
$$= \pm 1.$$

Also if $\zeta = \sqrt{D}$ and $\omega = (-AP + \sqrt{D})/A|N|$, it is easy to verify that $\omega = \frac{U\zeta + R}{V\zeta + S}$ and that S = 0 implies V = R = 1. The lemma now implies that U/V = X/y is a convergent A_{n-1}/B_{n-1} to ω . Also

$$G_{n-1} = Q_0 A_{n-1} - P_0 B_{n-1}$$

= $(A|N|)X - (-AP)y = Ax.$

Hence

$$N = Ax^{2} - By^{2} = \frac{G_{n-1}^{2} - BB_{n-1}^{2}}{A} - BB_{n-1}^{2}$$
$$= \frac{G_{n-1}^{2} - DB_{n-1}^{2}}{A}$$
$$= \frac{(-1)^{n}A|N|Q_{n}}{A}$$
$$= (-1)^{n}|N|Q_{n}.$$

Hence $Q_n = (-1)^n N / |N|$.

If x < 0, then $\omega^* = \frac{-X\sqrt{D}+R}{-y\sqrt{D}+x} = \frac{X\sqrt{D}-R}{y\sqrt{D}-x}$ and X/y is a convergent A_{m-1}/B_{m-1} to ω^* . Again, $G_{m-1} = Ax$ and $Q_m = (-1)^{m+1}N/|N|$.

Refining the necessary condition for solubility

Lemma. An equivalence class of solutions contains an (x, y) with $x \ge 0$ and y > 0.

Proof. Let (x_0, y_0) be fundamental solution of a class C. Then if $x_0 \ge 0$ we are finished. So suppose $x_0 < 0$ and let $u + v\sqrt{D}$, u > 0, v > 0, be a solution of Pell's equation.

Define X and Y by

$$X + Y\sqrt{D} = (x_0 + y_0\sqrt{D})(u + v\sqrt{D}).$$

Then it can be shown that

(a) X < 0 and Y < 0 if N > 0,

(b) X > 0 and Y > 0 if N < 0.

Hence C contains a solution (X', Y') with X' > 0 and Y' > 0.

Hence a necessary condition for solubility of $Ax^2 - By^2 = N$ is that $Q_n = (-1)^n N/|N|$ holds for some n in the continued fraction for $\omega = \frac{-AP + \sqrt{D}}{A|N|}$.

Limiting the search range when testing for necessity

Let
$$\omega = [a_0, \ldots, a_t, \overline{a_{t+1}, \ldots, a_{t+l}}].$$

Then by periodicity of the Q_i , we can assume that $Q_n = (-1)^n N/|N|$ holds for some $n \le t+l$ if l is even, or $n \le t+2l$ if l is odd.

Sufficiency.

Suppose $AP^2 \equiv B \pmod{|N|}, \ 0 \le P \le |N|/2.$ (i) Let $\omega = \frac{-AP + \sqrt{D}}{A|N|}$ and suppose $Q_n = (-1)^n N/|N|$ for some minimal $n \ge 1.$ Then

$$G_{n-1} = Q_0 A_{n-1} - P_0 B_{n-1}$$

= $A|N|A_{n-1} + APB_{n-1}$
= $A(|N|A_{n-1} + PB_{n-1})$

Also

$$G_{n-1}^2 - DB_{n-1}^2 = (-1)^n Q_0 Q_n$$

= $(-1)^n (A|N|)(-1)^n N/|N|$
= $AN.$

Hence $A(G_{n-1}/A)^2 - BB_{n-1}^2 = N$ and the equation $Ax^2 - By^2 = N$ has the solution $(|N|A_{n-1} + PB_{n-1}, B_{n-1}).$

Similarly (ii): with $\omega^* = \frac{-AP - \sqrt{D}}{A|N|}$ and $Q_m = (-1)^{m+1} N/|N|$ for some minimal $m \ge 1$, the equation $Ax^2 - By^2 = N$ has the solution $(|N|A_{m-1} + PB_{m-1}, B_{m-1})$.

Then the solution (x, y) in (i) and (ii) with smaller y, will be the fundamental solution for the class P.

Primitivity of solutions

The fact that gcd $(G_{n-1}/A, B_{n-1}) = 1$ if $Q_n = \pm 1$, follows from the next result.

Theorem. Let $Ax^2 - By^2 \equiv N, AP^2 \equiv B \pmod{Q}$ and $x \equiv Py \pmod{Q}$, where Q = |N|. Then gcd(x, y) = 1.

Proof. (Inspired by Peter Hackman's.)

 $APx - By \equiv (AP^2 - B)y \equiv 0 \pmod{Q}$ so APx - By = aQ. (1) Also -Py + x = bQ. (2)

Then adding y times (1) and Ax times (2) gives:

$$(ay + bxA)Q = -By^2 + Ax^2 = N.$$

Hence $ay + bxA = N/Q = \pm 1$ and gcd(x, y) = 1.

An example: $4x^2 - 7y^2 = -111$.

The solutions of $4P^2 \equiv 7 \pmod{111}$ satisfying $0 \le P \le 55$ are P = 14 and P = 23.

(a)
$$P = 14$$
:
(i) $\omega = \frac{-AP + \sqrt{D}}{A|N|} = \frac{-56 + \sqrt{28}}{444} = [-1, 1, 7, 1, \overline{3}, 10, 3, 2]$ and
 $Q_5 = 1 = (-1)^5 N/|N|, A_4/B_4 = -4/35.$

Then

 $G_4/A = |N|A_4 + PB_4 = 111 * -4 + 14 * 35 = 46$ and $(G_4/A, B_4) = (46, 35)$ is a solution.

(ii)
$$\omega^* = \frac{-AP - \sqrt{D}}{A|N|} = \frac{-56 - \sqrt{28}}{444} =$$

[-1, 1, 6, 4, $\overline{10}, 3, 2, 3$] and
 $Q_4 = 1 = (-1)^{(4+1)} N/|N|, A_3/B_3 = -4/29.$

Then

 $G_3/A = |N|A_3 + PB_3 = 111*-4+14*29 = -38$ and $(G_3/A, B_3) = (-38, 29)$ is a solution. Hence (-38, 29) is the fundamental solution for class P = 14.

(b)
$$P = 23$$
:
(i) $\omega = \frac{-AP + \sqrt{D}}{A|N|} = \frac{-92 + \sqrt{28}}{444} = [-1, 1, 4, 8, \overline{3, 2, 3, 10}]$ and
 $Q_3 = 1 = (-1)^3 N/|N|, A_2/B_2 = -1/5.$

Then

 $G_2/A = |N|A_2 + PB_2 = 111 * -1 + 23 * 5 = 4$ and $(G_2/A, B_2) = (4, 5)$ is a solution.

(ii)
$$\omega^* = \frac{-AP - \sqrt{D}}{A|N|} = \frac{-92 - \sqrt{28}}{444} =$$

[-1, 1, 3, 1, 1, 3, 2, 3, 10] and
 $Q_4 = 1 = (-1)^{(4+1)} N/|N|, A_3/B_3 = -1/5.$

Then

 $G_3/A = |N|A_3 + PB_3 = 111 * -1 + 23 * 5 = 4$ and $(G_3/A, B_3) = (4, 5)$ is a solution. Hence (4, 5) is the fundamental solution for class P = 23. Now the fundamental solution of $x^2 - 28y^2 = 1$ is $\eta = 127 + 24\sqrt{28}$. Hence the complete solution for $4x^2 - 7y^2 = -111$ is given by $x + y\sqrt{28} = \pm \eta^n(\pm 38 + 29\sqrt{28})$ and $\pm \eta^n(\pm 4 + 5\sqrt{28}), n \in \mathbb{Z}$.

13th September 2007