Solving Az? — By? = N in integers, where
A>0,B>0and D= AB is not a perfect
square and gcd(A,B) = gcd(A,N) = 1.

Keith Matthews

Abstract

T his generalises an earlier algorithm of the
author for solving z2 — Dy? = N.

Remark If D is a perfect square, say D = 02,
then the given equation is equivalent to
A?z2 — C?%y2 = AN, which is easily solved.



Equivalence classes of primitive solutions
of Az? — By? = N.

The identity
(Az? — By?)(u? — Dv?) =
A(zu 4+ yvB)? — B(uy + Avz)?

shows that a solution (z,y) of Az? — By?2 = N
and a solution (u,v) of Pell's equation
u? — Dv? = 1, together produce a solution

(«',y") = (wu + yvB,uy + Avz)
of Az’? — By'? = N. Moreover if gcd(z,y) = 1,
then gcd(2’,y') = 1.
Note that
Az + y'v/D = (Azx + yvD)(u + vv/D). (1)

Equation (1) defines an equivalence relation
on the set of all primitive solutions of
Axz? — By? = N.



Attaching a residue class P (mod |N|) to
each equivalence class.

If Az2 — By? = N, gcd(z,y) = 1 = gcd(A, N),
then gcd(y, N) = 1.

Hence we can define P,—|N|/2 < P < |N|/2,
by x = yP (mod |N|). Then

Az? — By? = 0(mod|N])
Ay?°P? — By® = 0(mod|N|)
AP? — B = 0(mod|N|)
AP? = B (mod|N)).



Primitive solutions (z,y) and (z/,vy’) are
equivalent if and only if
Azx' —yy’'B = 0(mod|N|)
yr' —xy’ = 0(mod|N|).
Then (x,y) and (2/,y’) are equivalent if and
only if P = P’ (mod |N|).

Hence the number of equivalence classes is
finite.



If (x,y) is a solution for a class C, then (—x,y)
is a solution for the conjugate class C*.

It can happen that C* = C, in which case C is
called an ambiguous class.

The solution (x,y) in a class with least y > 0
is called a fundamental solution.

For an ambiguous class, there are either two

(z,y) and (—=z,y) with least y > 0 if x > 0 and
one if £ = 0, namely (0,1) and we choose the
one with x > 0.



Continued fractions of quadratic
irrationalities.

Let w = PO;SS/_ [ag,a1,...,], where
QOKPO — D)-

Then the n—th complete quotient

Tn = [an,ap41,-..,] = (Pn+ VD) /Qn.

There is a simple algorithm for calculating an,
P, and Qn:

a, = {MJ’ (2)

Qn
Pn-|-1 — anQn—an,
D—P2
Qni1=—gt

We also note the following important identity

Gr_1— DB;_1 = (—1)"QoQn,
where G,,_1 = QoA,—1 — PoB,,—1.

With w* POQS/E, we have

Gn 1 DBn 1 — (_1)n+1QOQn-



Necessary conditions for solubility of
Axz? — By? = N.

Suppose Ax? — By? = N,gcd(z,y) =1 =
gcd(A,B) =gcd(A,N),A>0,B >0,y > 0.

We have z = yP (mod |N]) and

AP? = B(mod |N|). Also the symmetry
(z,y) < (—x,y) allows us to assume
0< P <|N|/2.

Let x = Py + |[N|X. Then

Substituting for = Py + |N|X in the
equation Az? — By? = N gives

AIN|X2 4 2APXy + (Allel B2 = .



(i) If x > 0, then
(a) X/y is a convergent A,,_1/B,_1 to

w_—AP—|—\/5
AN

(b) ($7y) — (Gn—l/A7Bn—1)1
(©) @n= (-1}

(ii) If x < 0O, then
(a) X/y is a convergent A,,,_1/Bm—1 to
Wt = —AP—+/D
AN
(b) (z,y) = (Gm-1/A, Bn-1),

(©) Qm = (=)™t .




We prove (i) (a) and (ii) (a) by using the
following extension of Theorem 172 in Hardy
and Wright's book:

Lemma. If w = %, where ( > 1 and
U, V,R,S are integers such that V. >0,5 >0
and US—VR=41,orS=0and V=R=1,

then U/V is a convergent to w.



We apply the Lemma to the integer matrix

v RHX N+]

vV S Y A

The matrix has determinant
(—APxz + By)
V|
Az(x — Py) + APzy — By?
V|

A = XAz —vy

Az? — By?
[N
= =+£1.

Also if ( =+/D and w = (—AP ++VD)/A|N]|, it
IS easy to verify that w = % and that
S=0 impliesV =R = 1.
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The lemma now implies that U/V = X/y is a
convergent A,,_1/B,—1 to w. Also

Gp-1 = QoAp—1— FPoB,—1
= (A|IN|)X — (—AP)y = Ax.

Hence
G2
N = Az? — By? = ”Xl — BB?_,
_ GZ2_,-DBZ_,
o A
(_1)nA|N|Qn
A
<_1)n|N|Qn

Hence @, = (—1)"N/|N]|.
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x _ —XVD+R _ Xv/D-R
If x <O, then w* = “ WDtz — Dz and
X/y is a convergent A,,,_1/B;,—1 to w*.

Again, G,_1 = Az and Qm = (—1)™T1IN/|N].
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Refining the necessary condition for
solubility

Lemma. An equivalence class of solutions
contains an (x,y) with x > 0 and y > 0.

Proof. Let (zg,yp) be fundamental solution
of a class C'. Then if zg > 0 we are finished.
So suppose zg < 0 and let u + vV D,

u > 0,v > 0, be a solution of Pell's equation.

Define X and Y by

X +YVD = (20 + yovD)(u + vVD).
Then it can be shown that
(a) X <0and Y <O if N >0,
(b) X >0and Y >0 if N <0.

Hence C contains a solution (X', Y’) with
X'">0and Y' > 0.

Hence a necessary condition for solubility of
Az? — By? = N is that Q, = (—1)"N/|N|

holds for some n in the continued fraction for

w_—AP+\/5
— AIN]
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Limiting the search range when testing
for necessity

Let w = [ao, vy Oty Qg 1y - - ,at_H].

Then by periodicity of the @;, we can assume
that @, = (—1)"N/|N| holds for some
n<t+lifliseven, orn<t+2if [ is odd.
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Sufficiency.

Suppose AP? = B (mod |N|), 0 < P < |N|/2.

(i) Let w = _Ajm/ﬁ and suppose
Qn = (=1)"N/|N| for some minimal n > 1.

T hen

Gn—l QOAn—l — POBn—l
A|N|An—1 + APBj_1

A(IN|Ap_1 4 PBp_1).

AlsO

G2_1—-DB:_ 1 = (-1)"QoQn
= (—=1)"(A|N])(~1)"N/|N|
= AN.

Hence A(G,_1/A)? — BB2_; = N and the
equation Az? — By? = N has the solution
(|[N|Ap—1+ PB,_1,Bp—1).
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Similarly (ii): with w* = —Aj;v@ and

Qm = (—1)™TIN/|N| for some minimal
m > 1, the equation Az? — By? = N has the
solution (|N|Am_1 + PB,,_1, Bm—l)-

Then the solution (x,y) in (i) and (ii) with
smaller y, will be the fundamental solution for
the class P.
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Primitivity of solutions

The fact that gcd (G,,_1/A,B,,—1) = 1 if
n = *+1, follows from the next result.

Theorem. Let
Az? — By? = N, AP? = B(mod Q) and
x = Py (mod @), where Q = |N|. Then
gcd(x,y) = 1.

Proof. (Inspired by Peter Hackman's.)
APz — By = (AP? - B)y=0(modQ)

so APx — By = a@. (1)
Also — Py—+x bQ. (2)

Then adding y times (1) and Ax times (2)
gives:
(ay + bz A)Q = —By? + Az° = N.

Hence ay + bxA = N/Q = £1 and

gcd(z,y) = 1.
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An example: 4x? — 7y? = —111.

The solutions of 4P2 =7 (mod 111) satisfying
O<P<55are P=14 and P = 23.

(a) P =14
(I) W = —AP++\D — —56++28 —
AN 444

[—-1,1,7,1,3,10, 3, 2] and
Qs = 1= (—1)°N/|N|, A4/Bs = —4/35.

Then
Ga/A =|N|As+PBy =111%x—4+14x35 = 46
and (G4/A, Bs) = (46,35) is a solution.

(ii) W = —AP-—/D — —56—+/28 —
A|N| 444

[—1,1,6,4,10,3,,2,3] and
Qs =1=(—1)*TVN/|N|, A3/B3 = —4/29.

Then

G3/A — |N|A3—|—PB3 = 111%x—4+414%x29 = —38
and (G3/A, B3z) = (—38,29) is a solution.
Hence (—38,29) is the fundamental solution
for class P = 14.
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(b) P = 23;

(i) w= =APELVD _ 92428 _
AN 444

[_17 1,4,8,3,2,3, 10] and
Q3 =1=(-1)3>N/|N|, A3/B> = -1/5.

Then
G>/A = |N|A> 4+ PB, =111%—-1423x5=4
and (G>/A, By) = (4,5) is a solution.

(i) w* = —AP—+v/D __ —92—-+/28 __
o A|N| T 444 —
[_17 173717 17372,3, 10] and

Qs=1=(-1)*VN/|N|, A3/B3 = -1/5.

Then

G3/A =|N|A3+ PB3=111%x-14+23x5=4
and (G3/A,B3) = (4,5) is a solution. Hence
(4,5) is the fundamental solution for class

P = 23.
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Now the fundamental solution of
2 —28y2 =1 is n = 127 + 24/28.

Hence the complete solution for
412 — 7y? = —111 is given by

x + yv28 = £n"(£38 + 29+4/28) and
+n"(x£4 4+ 5/28),n € Z.

13th September 2007
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