
Generalizations of the 3x + 1 problem and
connections with Markov matrices and chains

Keith Matthews

University of Queensland

10th May 2010



3x+1 conjecture (Collatz 1929)

Let T : Z→ Z be defined by

T (x) =

{
x/2 if x is even,

(3x + 1)/2 if x is odd.

Then experimentally, the iterates x ,T (x),T 2(x), . . .

(a) with x > 0, reach the cycle 1, 2, 1;

(b) with x < 0, reach one of the cycles
−1,−1;
−5,−7,−10,−5;
−17,−25,−37,−55,−82,−41,−61,−91,−136,−68,−34,−17.

Experiment at
http://www.numbertheory.org/php/collatz.html

http://www.numbertheory.org/php/collatz.html


A generalization

Let a and b be integers, a even, b odd and

T (x) =

{
(x + a)/2 if x ≡ 0 (mod 2),

(3x + b)/2 if x ≡ 1 (mod 2).

We expect all iterates to eventually cycle, with finitely many cycles
including the following:
(i) a, a;
(ii) −b,−b;
(iii) b + 2a, 2b + 3a, b + 2a;
(iv) −5b − 4a,−7b − 6a,−10b − 9a,−5b − 4a;
(v) −17b − 16a,−25b − 24a,−37b − 36a,−55b − 54a,
−82b − 81a,−41b − 40a,−61b − 60a,−91b − 90a,
−136b − 135a,−68b − 67a,−34b − 33a,−17b − 16a.



The 3x + 371 mapping

T (x) =

{
x/2 if x is even,

(3x + 371)/2 if x is odd.

We believe there are 9 cycles (lengths in parentheses):

0 (1),−371 (1), 371 (2),−1855 (3),−6307 (11),

25 (222), 265 (4), 721 (29),−563 (14).

Experiment at
http://www.numbertheory.org/php/3x+371.html

http://www.numbertheory.org/php/3x+371.html


Hasse’s generalization

Let m > d > 1, gcd(m, d) = 1 and let Rd be a set of d − 1
nonzero residue classes (mod d). Then

T (x) =

{
x/d if x ≡ 0 (mod d)

(mx − r)/d if mx ≡ r (mod d), r ∈ Rd .

Then H. Möller conjectured that the sequence of iterates
x ,T (x),T (2)(x), . . ., eventually cycles for all integers x , if and only
if m < dd/(d−1) and that regardless of this inequality, the number
of cycles is finite.



Generalized 3x+1 mappings

Let d ≥ 2 and m0, . . . ,md−1 be non–zero integers. Also for
i = 0, . . . , d − 1, let ri ∈ Z satisfy ri ≡ imi (mod d). Then

T (x) =
mix − ri

d
if x ≡ i (mod d)

defines a mapping T : Z→ Z, called a generalized 3x + 1 mapping.

Equivalently, in terms of the integer part symbol,

T (x) =
⌊mix

d

⌋
+ ai if x ≡ i (mod d),

where a0, . . . , ad−1 are integers.



kth iterate formula

If T k(x) ≡ i (mod d), 0 ≤ i < d , we define mk(x) = mi and
rk(x) = ri . Then

(a) T k(x) =
m0(x) · · ·mk−1(x)

dk

(
x −

k−1∑
i=0

ri (x)d i

m0(x) · · ·mi (x)

)
.

(b) If T i (x) 6= 0 for all i ≥ 0, then

T k(x) =
m0 · · ·mk−1(x)

dk
x
k−1∏
i=0

(
1− ri (x)

mi (x)T i (x)

)
.



Diophantine equation for a cycle

The kth iterate formula (a) gives the following criterion for x ∈ Z
to start a cycle of length K with odd iterates
T it (x), 0 ≤ i1 < · · · < iL < K :

(2K − 3L)x =
L∑

t=1

2it 3L−t . (1)

Example. x = −17. Here T 11(−17) = −17 and the iterates
T k(−17), 0 ≤ k < 11 are
−17,−25,−37,−55,−82,−41,−61,−91,−136,−68,−34. Hence
i1 = 0, i2 = 1, i3 = 2, i4 = 3, i5 = 5, i6 = 6, i7 = 7 and L = 7. Then
equation (1) gives

(211−37)(−17) = 2363 = 2036+2135+2234+2333+2532+263+27.



Relatively prime maps: Conjectures

Let gcd(mi , d) = 1 for 0 ≤ i ≤ d − 1. (The relatively prime case).

(i) If |m0 · · ·md−1| < dd , then all trajectories {T k(x)}, x ∈ Z,
eventually cycle.

(ii) If |m0 · · ·md−1| > dd , then almost all trajectories
{T k(x)}, x ∈ Z are divergent (that is, T k(x)→ ±∞).

(iii) The number of cycles is finite and positive.

(iv) If the trajectory {T k(x)}, x ∈ Z diverges, then the iterates
are uniformly distributed mod dα for each α ≥ 1. i.e.,

lim
N→∞

1
N

#{k < N|T k(x) ≡ j (mod dα)} =
1

dα
.



An example where |m0 · · ·md−1| < dd

T (x) =


x/3 if x ≡ 0 (mod 3)

(2x − 2)/3 if x ≡ 1 (mod 3)
(13x − 2)/3 if x ≡ 2 (mod 3)

Here d = 3,m0 = 1,m1 = 2,m2 = 13 and
m0m1m2 = 26 < 27 = dd .

There appear to be six cycles, with starting values
0, 2, 47,−2,−10,−22.

The trajectory starting with x = 338 takes 7161 iterations to reach
the cycle beginning with 2. Also the maximum iterate value is
T 2726(338), a number with 73 digits.



Examples where |m0 · · ·md−1| > dd

(1) The 5x + 1 mapping:

T (x) =

{
x/2 if x is even,

(5x + 1)/2 if x is odd,

Here the trajectory starting with x = 7 appears to be divergent.
There appear to be 5 cycles, with starting values 0, 1, 13, 17,−1.

(2) (Collatz - a 1–1 map of Z onto Z):

T (x) =


2x/3 if x ≡ 0 (mod 3)

(4x − 1)/3 if x ≡ 1 (mod 3)
(4x + 1)/3 if x ≡ 2 (mod 3)

Here the trajectory starting with x = 8 appears to be divergent.
There appear to be 9 cycles with starting values
0,±1,±2,±4,±44.



Limiting frequencies conjecture for divergent trajectories
(relatively prime T )

For a mapping of relatively prime type, experiments reveal that for
each m > 1, a divergent trajectory

(a) eventually belongs to a union
B(j1,m) ∪ . . . ∪ B(jr ,m), 0 ≤ j1 < · · · < jr ≤ m − 1 of
congruence classes (mod m),

(b) occupies each B(ji ,m) with a positive limiting frequency fi ,

(c) occupies each B(ji + tm,md), 0 ≤ t < d , with limiting
frequency fi/d .

For a wider class of mappings T , we believe these sets and the
frequencies fi , can be predicted by studying a certain Markov
matrix QT (m).



An example of limiting frequency behaviour

The 5x − 3 mapping:

T (x) =

{
x/2 if x is even,

(5x − 3)/2 if x is odd,

(i) m = 5. Trajectories such as {T k(−5)} and {T k(−21)}
appear to be divergent and eventually occupy the congruence
classes B(1, 5),B(2, 5),B(3, 5),B(4, 5) with apparent limiting
frequencies 8/15, 1/15, 4/15, 2/15.

(ii) m = 3. The trajectory {T k(−5)} occupies B(1, 3) and
B(2, 3) with apparent limiting frequencies 1/2, 1/2, whereas
the trajectory {T k(−21)} occupies B(1, 3) for all k ≥ 0.



Size of divergent trajectory k-th iterate

On the assumption that the limiting frequencies for divergent
trajectories exist for the classes B(j , d) and equal 1/d , the product
formula for T k(x) allows us to us to deduce that

|T k(x)|1/k → |m0 · · ·md−1|1/d

d
.

If the limiting frequencies fi exist, but are not uniform, this limit is
replaced by

|T k(x)|1/k → |m0|f0 · · · |md−1|fd−1

d
.



Some properties of T−1

(i) T−1(B(j ,m)) is a disjoint union of N congruence classes
(modmd). Moreover, if gcd(mi ,m) = 1 for i = 0, . . . , d − 1,
then N = d .

(ii) In the relatively prime case, the dα cylinders

B(i0, d) ∩ T−1(B(i1, d)) ∩ · · · ∩ T−(α−1)(B(iα−1, d)),

0 ≤ i0 < d , . . . , 0 ≤ iα−1 < d , are the dα congruence classes
mod dα.

(iii) In the relatively prime case, if

A = B(j , dα) and B = B(k , dβ),

then T−K (A) ∩ B is a disjoint union of dK−β congruence
classes mod dK+α, if K ≥ β.



Extension of T to d-adic integers Ẑd

We restrict ourselves to the relatively prime case.
T extends uniquely to a continuous mapping T : Ẑd → Ẑd . This
ring is a compact metric space under the d–adic metric and the
”congruence” classes mod dα form a basis for the open sets.
There is a Haar measure µ on the additive group of Ẑd , where
µ(B(j , dα)) = 1/dα.

Property (i) implies that T−1(B(j , dα)) is the disjoint union of d
congruence classes (mod dα+1); hence T is measure–preserving :

µ(T−1(A)) = µ(A),

if A is a measurable set in Ẑd .



Applying the ergodic theorem to T : Ẑd → Ẑd

Property (iii) of T implies the strongly–mixing property

lim
K→∞

µ(T−K (A) ∩ B) = µ(A)µ(B)

for all measurable sets A and B in Ẑd ; hence T is ergodic:

T−1(A) = A =⇒ µ(A) = 0 or 1.

Applying the ergodic theorem to B(j , dα) gives

lim
N→∞

1
N

#{k < N|T k(x) ≡ j (mod dα)} =
1

dα

for almost all x ∈ Ẑd .



H. Möller’s d-adic expansion for relatively prime T

For all x ∈ Ẑd ,

x =
∞∑
i=0

ri (x)d i

m0(x) · · ·mi (x)
.

This tells us that the congruence classes mod d occupied by the
iterates of x , in fact determine x .

A corresponding expansion is useful in a later example of a
mapping T : GF (2)[X ]→ GF (2)[X ].



Markov matrix arising from T

To introduce Markov chains, we need a probability space containing
Z, which we take to be the polyadic integers Ẑ. Like the d–adic
integers, this ring is a compact metric space that can be defined as
a completion of Z. The congruence class {x ∈ Ẑ|x ≡ j (modm)} is
also denoted by B(j ,m). Then our finitely additive measure µ on
Z extends to a probability Haar measure on Ẑ.



Markov chain equation

Then the sequence of random set–valued functions
YK (x) = B(TK (x),m), x ∈ Ẑ, forms a Markov chain with m
states B(j ,m), 0 ≤ j < m and transition matrix QT (m) = [qij(m)]:

qij(m) = Pr{(T (x) ∈ B(j ,m)|x ∈ B(i ,m)}
= µ{B(i ,m) ∩ T−1(B(j ,m))}/µ{B(i ,m)

and Markov property:

Pr(Y0(x) = B(i0,m), . . .YK (x) = B(iK ,m)|Y0(x) = B(i0,m))

= qi0i1(m) · · · qiK−1iK (m).



Markov chain property continued

This last equation is a translation of the statement:

B(i0,m) ∩ T−1(B(i1,m)) ∩ · · · ∩ T−K (B(iK ,m)) consists of
pi0i1(m) · · · piK−1iK (m) congruence classes (modmdK ), where
B(i ,m) ∩ T−1(B(j ,m)) consists of pij(m) congruence classes
(modmd).

The equation also holds if gcd(mi , d
2) = gcd(mi , d) for

0 ≤ i < d , provided d divides m.

If d divides m, a simple formula exists for qij(m):

qij(m) =

{
gcd(mi ,d)

d if T (i) ≡ j (mod m
d gcd(mi , d)),

0 otherwise.



A correspondence

With respect to the Markov matrix QT (m),

(a) C is a closed set of states if B ∈ C and qBB′ > 0 imply B ′ ∈ C.

(b) C is a positive recurrent set of states if it is a minimal closed
set.

Then under the corrrespondence

SC = B(j1,m) ∪ · · · ∪ B(jt ,m)↔ C = {B(j1,m), . . . ,B(jt ,m)},

where 0 ≤ j1 < · · · < jt < m,

(a) T–invariant sets SC correspond to closed sets C,

(b) minimal T–invariant sets SC (ergodic sets) correspond to
positive recurrent classes C,



Structure of the ergodic sets SC

Let N1 be the set of positive integers composed of primes which
divide at least one mi ; also let N2 be the set of positive integers
which are relatively prime to each mi .
Also, for 0 ≤ i < j < d let

∆ij = rj(d −mi )− ri (d −mj)

and ∆ = gcd0≤i<j<d ∆ij .

Let S
(m)
1 , . . . ,S

(m)
r(m) be the ergodic sets (modm). Then the

following are all the ergodic sets:

(a) Ẑ if m ∈ N2 and gcd(m,∆) = 1;

(b) S
(m)
1 , . . . ,S

(m)
r(m), where m|∆, m ∈ N2;

(c) S
(m)
1 , where m ∈ N1;

(d) any intersection of a set of type (b) and one of type (c).



A mapping property of ergodic sets

Suppose T is a mapping of relatively prime type.

If m divides n and B(j1, n) ∪ · · · ∪ B(jt , n) is an ergodic set
(mod n), then B(j1,m) ∪ · · · ∪ B(jt ,m) is an ergodic set (modm).



A formula for the stationary distribution ρB ,B ∈ C

Let pKij(m) be the number of congruence classes (modmdK )
contained in B(i ,m) ∩ T−K (B(j ,m)).
Then the cylinder equation implies

[pKij ] = [pij ]
K = dK{QT (m)}K .

Hence

µ{B(i ,m) ∩ T−K (B(j ,m))}
µ{B(i ,m)}

= pKij(m)/dK = [{QT (m)}K ]ij .

Then if B(j ,m) belongs to C, by the well–known limit result for
Markov matrices, summing over B(i ,m) ∈ C, we get

ρB(j ,m) = limN→∞
1

N

∑
K<N

µ{SC ∩ T−K (B(j ,m))}
µ{SC}

.



Ergodic property

Let C be a positive recurrent class and for each B ∈ C, let ρB be
the component of the unique stationary distribution over C. Then
SC = ∪B∈C is T–invariant. Hence an ergodic theorem for Markov
chains, applied to the Yn(x) restricted to SC , gives for a B ∈ C:

Pr

(
lim

K→∞
1
K

#{n; n < K , Yn(x) = B} = ρB

)
= 1.

In other words,

lim
N→∞

1
N

#{k ; k < N, T k(x) ∈ B} = ρB

for almost all x ∈ SC .



Transient class property

Let P be the set of positive recurrent states. Then

Pr(Yn(x) ∈ P for some n > 0) = 1.

Hence we expect all divergent trajectories starting in a transient
B(j ,m) to eventually enter some ergodic set SC , occupying each
B ∈ SC with limiting frequency ρ(B).



Ergodic sets (mod d)

In the case of relatively prime T , there is only one positive
recurrent class, C1 = {B(0, d), . . . ,B(d − 1, d)}. However for non
relatively prime T , where gcd(mi , d

2) = gcd(mi , d), 0 ≤ i < d ,,
we may have several such classes C1, . . . , Cr (and some transient
states). We expect

(i) if
∏

Bj∈Ci

(
|mj |
d

)ρBj
< 1, then all trajectories starting in SCi will

enter a cycle.

(ii) if
∏

Bj∈Ci

(
|mj |
d

)ρBj
> 1, then almost all trajectories starting in

SCi will be divergent.



Example 1 of QT (m)

The 5x − 3 mapping. Here

QT (3) =

 1 0 0
0 1/2 1/2
0 1/2 1/2

 .
There are two positive recurrent classes:

C1 = {B(0, 3)} and C2 = {B(2, 3),B(2, 3)}.

The stationary distribution for C2 is 1/2, 1/2. Trajectory
{T k(−5)} appears to diverge and occupies B(1, 3) and B(2, 3)
with limiting frequencies 1/2, 1/2. Trajectory {T k(−21)} appears
to diverge and occupies B(0, 3) for all k ≥ 0.



Example 2 of QT (m)

A four–branched mapping:

T (x) =


3x/2 if x ≡ 0 (mod 4)

(x + 1)/2 if x ≡ 1 (mod 4)
x/2 + 1 if x ≡ 2 (mod 4)

(5x + 3)/2 if x ≡ 3 (mod 4)

QT (4) =


1/2 0 1/2 0

0 1/2 0 1/2
1/2 0 1/2 0

0 1/2 0 1/2

→


1/2 1/2 0 0
1/2 1/2 0 0

0 0 1/2 1/2
0 0 1/2 1/2


on interchanging rows and columns 2 and 3.



Example 2 continued

There are two positive recurrent classes:

C1 = {B(0, 4),B(2, 4)} and C2 = {B(1, 4),B(3, 4)}.

The stationary vectors for both classes are (1/2, 1/2). Then

∏
Bj∈C1

(
|mj |
d

)ρBj
= (3/2)1/2(1/2)1/2 < 1,

∏
Bj∈C2

(
|mj |
d

)ρBj
= (1/2)1/2(5/2)1/2 > 1.

Hence we expect all trajectories starting with an even integer to
enter one of the cycles with starting values 0, 2, 4,−8,−32, while
most starting with an odd trajectory should diverge or else enter
one of the cycles with starting values
−1, 1, 3,−5, 7, 79, 87, 103, 107, 123.



Example 3 of QT (m)

T (x) =


x/3− 1 if x ≡ 0 (mod 3)

(x + 5)/3 if x ≡ 1 (mod 3)
10x − 5 if x ≡ 2 (mod 3)

QT (3) =

 1/3 1/3 1/3
1/3 1/3 1/3

1 0 0

 .
(QT (3))2 is positive, so all states are positive recurrent, with
stationary distribution 1/2, 1/4, 1/4. Also

(1/3)1/2(1/3)1/4(30/3)1/4 < 1.

Hence we expect all trajectories to eventually cycle. In fact there
appear to be five cycles, starting with values There appear to be
five cycles, with starting values 0, 5, 17, −1, −4.



Example 4 of QT (m)

T (x) =


x if x ≡ 0 (mod 3)

(7x + 2)/3 if x ≡ 1 (mod 3)
(x − 2)/3 if x ≡ 2 (mod 3)

QT (3) =

 1 0 0
1/3 1/3 1/3
1/3 1/3 1/3

 .
There is one positive recurrent class C1 = {B(0, 3)} and transient
states B(1, 3) and B(2, 3).
Here 3|x implies 3|T (x); so once a trajectory enters the zero
residue class mod 3, it remains there. Experimental evidence
(http://www.numbertheory.org/php/markov.html) strikingly
suggests that if T k(x) ≡ ±1 (mod 3) for all k ≥ 0, then the
trajectory must eventually enter one of the cycles −1,−1 or
−2,−4,−2. The author offers a $100 (Australian) prize for a
proof. This problem seems just as intractable as the 3x + 1
problem, but is more spectacular.

http://www.numbertheory.org/php/markov.html


The general mapping T

In 1983, George Leigh introduced a Markov chain {Yn}, which
enabled predictions to be made (mod m), d | m, for a wider class
of T .

Let mi = bidi , where bi ∈ Z, di ∈ N and gcd (d , bi ) = 1, where di
divides some power of d , 0 ≤ i < d .

We define a sequence of random functions on Ẑ : x → Yn(x) ∈ B,
the collection of congruence classes of the form B(j ,mk), where k
divides some power of d :



The random set–valued functions

(a) Y0(x) = B(x ,m);

(b) Yn+1(x) = B(T n+1(x),mkn+1), where

k0 = 1, kn+1 =
djkn

gcd (djkn, d)

and T n(x) ≡ j (mod d), 0 ≤ j < d .

Note that if gcd(mj , d) = 1 for 0 < j < d or
gcd(mj , d

2) = gcd(mj , d) (i.e., dj | d) for 0 < j < d , then
kn = 1 for all n.



Markov property and Transition probabilities qBB ′

We have

Pr(Y0(x) = B0, . . .YK (x) = BK |Y0(x) = B0)

= qB0B1 · · · qBK−1BK
,

where the transition probabilities qBB′ are defined as follows:

Let B = B(j ,M), B ′ = B(j ′,M ′), N = Mdj/d ,N
′ = lcm(N,m).

Then

qBB′ = Pr(Yn+1(x) = B ′|Yn(x) = B)

=

{
gcd(Mdj/m,d)

d if B ′ = B(T (j) + tN ′/N,N ′),

0 otherwise.



Algorithm for computing the states reached and the qBB ′

Starting with initial state B = B(j ,M) equal to one of
B(0,m), . . . ,B(m − 1,m), form the N ′/N states

B ′ = B(T (j) + tN ′/N,N ′), 0 ≤ t < N ′/N.

These give the states B ′ with qBB′ > 0; also qBB′ = N/N ′.

If the process finishes and n states are produced, we get an n × n
transition matrix QT (m), for which the row corresponding to state
B has N ′/N non–zero entries, each equal to N/N ′.



Criteria for cycling and divergence

Suppose that the Markov chain for m = d has finitely many states.
Also if C be a positive recurrent class, for each B ∈ C, let ρB be
the corresponding limiting probability. Then

(a) Every divergent trajectory will eventually occupy each class B
of some positive class C, with limiting frequency ρB .

(b) Let C be a positive recurrent class for the Markov chain
(mod d) and let

pj =
∑
B ∈ C

B ⊆ B(j, d)

ρB .



Criteria for cycling and divergence continued

Then if ∏
B(j ,d)∈C

(
|mj |
d

)pj

< 1,

all trajectories starting in a B(j , d) ∈ C will eventually cycle.
However if ∏

B(j ,d)∈C

(
|mj |
d

)pj

> 1,

almost all trajectories starting in a B(j , d) ∈ C will diverge.



Example 1 (Leigh 1983)

Let T : Z→ Z be defined by

T (x) =

{
x/2 if x is even,

12x + 4 if x is odd.

Here d = 2,m0 = 1,m1 = 24. Then d0 = 1, d1 = 8 and
gcd(m1, d

2
1 ) = gcd(24, 4) = 4 6= gcd(m1, d) = 2.

The recursive scheme for generating the states and positive
transition probabilities:

B(0, 2) → B(0, 2)
→ B(1, 2)

B(1, 2) → B(0, 8)
B(0, 8) → B(0, 4)
B(0, 4) → B(0, 2).

States: B(0, 2),B(1, 2),B(0, 8),B(0, 4).



Example 1 continued

QT (2) =


1/2 1/2 0 0

0 0 1 0
0 0 0 1
1 0 0 0

 .
QT (2)6 > 0, so the states B(0, 2),B(1, 2),B(0, 8),B(0, 4) form a
positive recurrent class with stationary vector

(ρB(0,2), ρB(1,2), ρB(0,8), ρB(0,4)) = (2/5, 1/5, 1/5, 1/5).

Then with p0 = ρB(0,2) + ρB(0,8) + ρB(0,4) and p1 = ρB(1,2),

(m0/d)p0(m1/d)p1 = (1/2)2/5+1/5+1/5(24/2)1/5

= (3/4)1/5 < 1,

so we expect all trajectories to enter cycles.



An example of Leigh (1986)

T (x) =



x/4 if x ≡ 0 (mod 8)
(x + 1)/2 if x ≡ 1 (mod 8)
20x − 40 if x ≡ 2 (mod 8)
(x − 3)/8 if x ≡ 3 (mod 8)
20x + 48 if x ≡ 4 (mod 8)

(3x − 13)/2 if x ≡ 5 (mod 8)
(11x − 2)/4 if x ≡ 6 (mod 8)
(x + 1)/8 if x ≡ 7 (mod 8)

We find there are 9 states in the Markov chain mod 8:
B(0, 8), B(1, 8), B(2, 8), B(3, 8), B(4, 8), B(5, 8), B(6, 8), B(7, 8), B(0, 32),

B(0, 8) → B(0; 2; 4; 6, 8)
B(1, 8) → B(1; 5, 8)
B(2, 8) → B(0, 32)
B(3, 8) → B(0; 1; 2; 3; 4; 5; 6; 7, 8)
B(4, 8) → B(0, 32)
B(5, 8) → B(1; 5, 8)
B(6, 8) → B(0; 2; 4; 6, 8)
B(7, 8) → B(0; 1; 2; 3; 4; 5; 6; 7, 8)

B(0, 32) → B(0, 8)



An example of Leigh (1986) continued

There are two positive recurrent classes: C1 = {B(1, 8), B(5, 8)}
and C2 = {B(0, 8), B(0, 32), B(2, 8), B(4, 8), B(6, 8)},
with transient states B(3, 8) and B(7, 8).

The limiting probabilities are ρ1 = (12 ,
1
2) and ρ2 = (38 ,

1
4 ,

1
8 ,

1
8 ,

1
8),

respectively.

We have p1 = p5 = 1
2 and as

∏
Bj∈C1

(
|mj |
d

)pj

= (1/2)1/2(3/2)1/2 < 1,

we expect every trajectory starting in SC1 = B(1, 8) ∪ B(5, 8) to
cycle, reaching one of 1, 13, 61, 205,−11.



An example of Leigh (1986) finished

Also p0 = 3
8 + 1

4 = 5
8 and p2 = p4 = p6 = 1

8 . Then as

∏
Bj∈C2

(
|mj |
d

)pj

= (1/4)5/8201/8201/8(11/4)1/8 > 1,

we expect most trajectories starting in SC2 = B(0, 2) to diverge,
displaying frequencies ρ2 = (58 ,

1
8 ,

1
8 ,

1
8) in the respective component

congruence classes. For example, the trajectory starting with 46.

We found 8 cycles lying in B(0, 2), with starting values
0, 10, 158, 3292, 4244, −2, −12, −18.



An example of Venturini (1992)

T (x) =



2500x/6 + 1 if x ≡ 0 (mod 6)
(21x − 9)/6 if x ≡ 1 (mod 6)
(x + 16)/6 if x ≡ 2 (mod 6)

(21x − 51)/6 if x ≡ 3 (mod 6)
(21x − 72)/6 if x ≡ 4 (mod 6)
(x + 13)/6 if x ≡ 5 (mod 6).

There are 9 states in the Markov chain (mod 6):

B(0, 6) → B(1, 12),B(5, 12),B(9, 12)
B(1, 6) → B(2, 6),B(5, 6)
B(2, 6) → B(0, 6),B(1, 6),B(2, 6),B(3, 6),B(4, 6),B(5, 6)
B(3, 6) → B(2, 6),B(5, 6)
B(4, 6) → B(2, 6),B(5, 6)
B(5, 6) → B(0, 6),B(1, 6),B(2, 6),B(3, 6),B(4, 6),B(5, 6)
B(1, 12) → B(2, 6)
B(5, 12) → B(1, 6),B(3, 6),B(5, 6)
B(9, 12) → B(5, 6),

namely B(0,6),B(1,6),B(2,6),B(3,6),B(4,6),B(5,6),B(1,12),B(5,12),B(9,12).



Venturini example finished

The 9 states form a positive recurrent class with limiting
probabilities

ρ = ( 18
202
, 20
202
, 53
202
, 20
202
, 18
202
, 55
202
, 6
202
, 6
202
, 6
202

).

Noting that B(1,12)⊆B(1,6), B(9,12)⊆B(3,6), B(5,12)⊆B(5,6), we get

p0=ρB(0,6), p1=ρB(1,12)+ρB(1,6), p2=ρB(2,6),

p3=ρB(9,12)+ρB(3,6), p4=ρB(4,6), p5=ρB(5,12)+ρB(5,6).

Then
∏d−1

i=0 (mi/d)pi < 1 and we expect all trajectories to
eventually cycle. There appear to be two cycles, with starting
values 2 and 6.

http://www.numbertheory.org/php/venturini1.html

http://www.numbertheory.org/php/venturini1.html


Example of infinitely many states (Chris Smyth 1993)

T (x) =

{
3x/2 if x ≡ 0 (mod 2)
b2x/3c if x ≡ 1 (mod 2).

This can be regarded as a 6–branched mapping. The integer
trajectories are much simpler to describe than the Markov chain:

(i) A non–zero even integer 2r (2c + 1) is successively multiplied
by 3/2 until it reaches 3r+2(2c + 1) = 6k + 3.

(ii) 6k + 3→ 4k + 2→ 6k + 3.

(iii) 6k + 1→ 4k → 6k → 9k → 6k .

(iv) 6k + 5→ 4k + 3 and unless we encounter 0 or −1 (fixed
points), we must eventually reach B(1, 6) or B(3, 6).

With m = 6, there are infinitely many states. e.g.,
Yn(0) = B(0, 2 · 3n+1) for n ≥ 0.



Other rings: GF (2)[x ]

Here the conjectural picture for trajectories is not so clear. Here is
an example of relatively prime type where |m0 · · ·m|d |−1| = |d ||d |,
where |f | = 2deg f .

T (f ) =


f
x if f ≡ 0 (mod x)

(x2+1)f+1
x if f ≡ 1 (mod x)

Most trajectories appear to cycle. However the trajectory starting
from 1 + x + x3 exhibits a regularity which enabled its divergence
to be proved: If Ln = 5(2n − 1), then

T Ln(1 + x + x3) =
1 + x3·2

n+1 + x3·2
n+2

1 + x + x2
.

The figure next page, shows the first 38 iterates.



Divergent trajectory {T k(1 + x + x3)} in GF2[x ]

The first 38 iterates

0:1101
1:11001
2:111101
3:1001001
4:01101101
5:1101101 ←
6:11011001
7:110111101
8:1101001001
9:11001101101

10:111111011001
11:1000010111101
12:01001001001001
13:1001001001001
14:01101101101101
15:1101101101101 ←
16:11011011011001
17:110110110111101
18:1101101101001001
19:11011011001101101
20:110110111111011001
21:1101101000010111101
22:11011001001001001001
23:110111101101101101101
24:1101001011011011011001
25:11001100110110110111101
26:111111111101101101001001
27:1000000001011011001101101
28:01000000100110111111011001
29:1000000100110111111011001
30:01000010111101000010111101
31:1000010111101000010111101
32:01001001001001001001001001
33:1001001001001001001001001
34:01101101101101101101101101
35:1101101101101101101101101 ←
36:11011011011011011011011001
37:110110110110110110110111101



Polynomials over GF(2) continued

There are infinitely many cycles, many of which have no
recognisable pattern.

However the trajectories starting with

gn = (1 + x2
n−1)/(1 + x) = 1 + x + · · ·+ x2

n−2

possess symmetry and are purely periodic, with period–length 2n.



Cyclic trajectory: g4(x) = (1 + x15)/(1 + x) ∈ GF (2)[x ]

0:111111111111111

1:1000000000000011

2:01000000000001111

3:1000000000001111

4:01000000000110011

5:1000000000110011

6:01000000011111111

7:1000000011111111

8:01000001100000011

9:1000001100000011

10:01000111100001111

11:1000111100001111

12:01011001100110011

13:1011001100110011

14:00111111111111111

15:0111111111111111

16:111111111111111



Mappings of rings of algebraic integers
Let d be a non–unit in the ring OK of integers of an algebraic
number field K . Then OK is composed of |Normk(d)| congruence
classes (mod d) and we can consider generalized 3x + 1 mappings
T : OK → OK . The conjectural picture for trajectories is not
entirely clear.
Example 1 (Leigh 1983). T : Z[

√
2]→ Z[

√
2] is defined by

T (α) =

{
α/
√

2 if α ≡ 0 (mod
√

2)

(3α + 1)/
√

2 if α ≡ 1 (mod
√

2).

Equivalently, write α = x + y
√

2, where x , y ∈ Z. Then

T (x , y) =

{
(y , x/2) if x ≡ 0 (mod 2)

(3y , (3x + 1)/2) if x ≡ 1 (mod 2).

There appear to be finitely many cycles with starting values

0, 1, −1, −5, −17,−2− 3
√

2, −3− 2
√

2, 9 + 10
√

2.



Example 1 continued

An interesting feature is the presence of at least three
one–dimensional T–invariant sets S1, S2, S3 in Z× Z:

(i) S1 : x = 0 or y = 0,

(ii) S2 : 2x + y + 1 = 0 or x + 4y + 1 = 0,

(iii) S3 : x + y + 1 = 0 or x + 2y + 1 = 0 or x + 2y + 2 = 0.

Trajectories starting in S1 or S2 oscillate from one line to the
other, while those starting in S3 oscillate between the first and
either of the second and third.

Trajectories starting in S1 will cycle, as T 2(x , 0) = (C (x), 0) and
T 2(0, y) = (0,C (y)), where C denotes the 3x + 1 mapping.



Example 2

T : Z[
√

3]→ Z[
√

3] is defined by

T (x) =


x/
√

3 if x ≡ 0 (mod
√

3)

(x − 1)/
√

3 if x ≡ 1 (mod
√

3)

(4x + 1)/
√

3 if x ≡ 2 (mod
√

3)

There are at least 103 cycles. The trajectory starting with
−1− 5

√
3 appears to be divergent. Divergent trajectories produce

limiting frequencies approximating (·27, ·32, ·40) in the residue
classes 0, 1, 2 (mod

√
3). Interpretation?



Website

I http://www.numbertheory.org/php/collatz.html
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