Generalizations of the $3 x+1$ problem and connections with Markov matrices and chains

Keith Matthews
University of Queensland

10th May 2010

$3 x+1$ conjecture (Collatz 1929)

Let $T: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by

$$
T(x)=\left\{\begin{array}{cl}
x / 2 & \text { if } x \text { is even } \\
(3 x+1) / 2 & \text { if } x \text { is odd }
\end{array}\right.
$$

Then experimentally, the iterates $x, T(x), T^{2}(x), \ldots$
(a) with $x>0$, reach the cycle $1,2,1$;
(b) with $x<0$, reach one of the cycles
$-1,-1$;
$-5,-7,-10,-5$;
$-17,-25,-37,-55,-82,-41,-61,-91,-136,-68,-34,-17$.
Experiment at
http://www.numbertheory.org/php/collatz.html

A generalization

Let a and b be integers, a even, b odd and

$$
T(x)=\left\{\begin{array}{cl}
(x+a) / 2 & \text { if } x \equiv 0(\bmod 2) \\
(3 x+b) / 2 & \text { if } x \equiv 1(\bmod 2) .
\end{array}\right.
$$

We expect all iterates to eventually cycle, with finitely many cycles including the following:
(i) a, a;
(ii) $-b,-b$;
(iii) $b+2 a, 2 b+3 a, b+2 a$;
(iv) $-5 b-4 a,-7 b-6 a,-10 b-9 a,-5 b-4 a$;
(v) $-17 b-16 a,-25 b-24 a,-37 b-36 a,-55 b-54 a$,
$-82 b-81 a,-41 b-40 a,-61 b-60 a,-91 b-90 a$,
$-136 b-135 a,-68 b-67 a,-34 b-33 a,-17 b-16 a$.

The $3 x+371$ mapping

$$
T(x)=\left\{\begin{array}{cl}
x / 2 & \text { if } x \text { is even } \\
(3 x+371) / 2 & \text { if } x \text { is odd }
\end{array}\right.
$$

We believe there are 9 cycles (lengths in parentheses):

$$
\begin{aligned}
& 0(1),-371(1), 371(2),-1855(3),-6307(11), \\
& 25(222), 265(4), 721(29),-563(14) .
\end{aligned}
$$

Experiment at
http://www.numbertheory.org/php/3x+371.html

Hasse's generalization

Let $m>d>1, \operatorname{gcd}(m, d)=1$ and let R_{d} be a set of $d-1$ nonzero residue classes $(\bmod d)$. Then

$$
T(x)= \begin{cases}x / d & \text { if } x \equiv 0 \quad(\bmod d) \\ (m x-r) / d & \text { if } m x \equiv r \quad(\bmod d), r \in R_{d}\end{cases}
$$

Then H . Möller conjectured that the sequence of iterates $x, T(x), T^{(2)}(x), \ldots$, eventually cycles for all integers x, if and only if $m<d^{d /(d-1)}$ and that regardless of this inequality, the number of cycles is finite.

Generalized $3 x+1$ mappings

Let $d \geq 2$ and m_{0}, \ldots, m_{d-1} be non-zero integers. Also for $i=0, \ldots, d-1$, let $r_{i} \in \mathbb{Z}$ satisfy $r_{i} \equiv i m_{i}(\bmod d)$. Then

$$
T(x)=\frac{m_{i} x-r_{i}}{d} \quad \text { if } x \equiv i(\bmod d)
$$

defines a mapping $T: \mathbb{Z} \rightarrow \mathbb{Z}$, called a generalized $3 x+1$ mapping.
Equivalently, in terms of the integer part symbol,

$$
T(x)=\left\lfloor\frac{m_{i} x}{d}\right\rfloor+a_{i} \quad \text { if } x \equiv i(\bmod d)
$$

where a_{0}, \ldots, a_{d-1} are integers.

kth iterate formula

If $T^{k}(x) \equiv i(\bmod d), 0 \leq i<d$, we define $m_{k}(x)=m_{i}$ and $r_{k}(x)=r_{i}$. Then
(a) $T^{k}(x)=\frac{m_{0}(x) \cdots m_{k-1}(x)}{d^{k}}\left(x-\sum_{i=0}^{k-1} \frac{r_{i}(x) d^{i}}{m_{0}(x) \cdots m_{i}(x)}\right)$.
(b) If $T^{i}(x) \neq 0$ for all $i \geq 0$, then

$$
T^{k}(x)=\frac{m_{0} \cdots m_{k-1}(x)}{d^{k}} x \prod_{i=0}^{k-1}\left(1-\frac{r_{i}(x)}{m_{i}(x) T^{i}(x)}\right)
$$

Diophantine equation for a cycle

The kth iterate formula (a) gives the following criterion for $x \in \mathbb{Z}$ to start a cycle of length K with odd iterates $T^{i_{t}}(x), 0 \leq i_{1}<\cdots<i_{L}<K:$

$$
\begin{equation*}
\left(2^{K}-3^{L}\right) x=\sum_{t=1}^{L} 2^{i_{t}} 3^{L-t} \tag{1}
\end{equation*}
$$

Example. $x=-17$. Here $T^{11}(-17)=-17$ and the iterates $T^{k}(-17), 0 \leq k<11$ are
$-17,-25,-37,-55,-82,-41,-61,-91,-136,-68,-34$. Hence $i_{1}=0, i_{2}=1, i_{3}=2, i_{4}=3, i_{5}=5, i_{6}=6, i_{7}=7$ and $L=7$. Then equation (1) gives

$$
\left(2^{11}-3^{7}\right)(-17)=2363=2^{0} 3^{6}+2^{1} 3^{5}+2^{2} 3^{4}+2^{3} 3^{3}+2^{5} 3^{2}+2^{6} 3+2^{7}
$$

Relatively prime maps: Conjectures

Let $\operatorname{gcd}\left(m_{i}, d\right)=1$ for $0 \leq i \leq d-1$. (The relatively prime case).
(i) If $\left|m_{0} \cdots m_{d-1}\right|<d^{d}$, then all trajectories $\left\{T^{k}(x)\right\}, x \in \mathbb{Z}$, eventually cycle.
(ii) If $\left|m_{0} \cdots m_{d-1}\right|>d^{d}$, then almost all trajectories $\left\{T^{k}(x)\right\}, x \in \mathbb{Z}$ are divergent (that is, $\left.T^{k}(x) \rightarrow \pm \infty\right)$.
(iii) The number of cycles is finite and positive.
(iv) If the trajectory $\left\{T^{k}(x)\right\}, x \in \mathbb{Z}$ diverges, then the iterates are uniformly distributed $\bmod d^{\alpha}$ for each $\alpha \geq 1$. i.e.,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{k<N \mid T^{k}(x) \equiv j\left(\bmod d^{\alpha}\right)\right\}=\frac{1}{d^{\alpha}}
$$

An example where $\left|m_{0} \cdots m_{d-1}\right|<d^{d}$

$$
T(x)=\left\{\begin{array}{cc}
x / 3 & \text { if } x \equiv 0(\bmod 3) \\
(2 x-2) / 3 & \text { if } x \equiv 1(\bmod 3) \\
(13 x-2) / 3 & \text { if } x \equiv 2(\bmod 3)
\end{array}\right.
$$

Here $d=3, m_{0}=1, m_{1}=2, m_{2}=13$ and
$m_{0} m_{1} m_{2}=26<27=d^{d}$.
There appear to be six cycles, with starting values $0,2,47,-2,-10,-22$.

The trajectory starting with $x=338$ takes 7161 iterations to reach the cycle beginning with 2 . Also the maximum iterate value is $T^{2726}(338)$, a number with 73 digits.

Examples where $\left|m_{0} \cdots m_{d-1}\right|>d^{d}$

(1) The $5 x+1$ mapping:

$$
T(x)=\left\{\begin{array}{cl}
x / 2 & \text { if } x \text { is even } \\
(5 x+1) / 2 & \text { if } x \text { is odd }
\end{array}\right.
$$

Here the trajectory starting with $x=7$ appears to be divergent.
There appear to be 5 cycles, with starting values $0,1,13,17,-1$.
(2) (Collatz - a 1 - 1 map of \mathbb{Z} onto \mathbb{Z}):

$$
T(x)=\left\{\begin{array}{cc}
2 x / 3 & \text { if } x \equiv 0(\bmod 3) \\
(4 x-1) / 3 & \text { if } x \equiv 1(\bmod 3) \\
(4 x+1) / 3 & \text { if } x \equiv 2(\bmod 3)
\end{array}\right.
$$

Here the trajectory starting with $x=8$ appears to be divergent.
There appear to be 9 cycles with starting values
$0, \pm 1, \pm 2, \pm 4, \pm 44$.

Limiting frequencies conjecture for divergent trajectories

 (relatively prime T)For a mapping of relatively prime type, experiments reveal that for each $m>1$, a divergent trajectory
(a) eventually belongs to a union

$$
B\left(j_{1}, m\right) \cup \ldots \cup B\left(j_{r}, m\right), 0 \leq j_{1}<\cdots<j_{r} \leq m-1 \text { of }
$$ congruence classes $(\bmod m)$,

(b) occupies each $B\left(j_{i}, m\right)$ with a positive limiting frequency f_{i},
(c) occupies each $B\left(j_{i}+t m, m d\right), 0 \leq t<d$, with limiting frequency f_{i} / d.
For a wider class of mappings T, we believe these sets and the frequencies f_{i}, can be predicted by studying a certain Markov matrix $Q_{T}(m)$.

An example of limiting frequency behaviour

The $5 x-3$ mapping:

$$
T(x)=\left\{\begin{array}{cl}
x / 2 & \text { if } x \text { is even } \\
(5 x-3) / 2 & \text { if } x \text { is odd }
\end{array}\right.
$$

(i) $m=5$. Trajectories such as $\left\{T^{k}(-5)\right\}$ and $\left\{T^{k}(-21)\right\}$ appear to be divergent and eventually occupy the congruence classes $B(1,5), B(2,5), B(3,5), B(4,5)$ with apparent limiting frequencies $8 / 15,1 / 15,4 / 15,2 / 15$.
(ii) $m=3$. The trajectory $\left\{T^{k}(-5)\right\}$ occupies $B(1,3)$ and $B(2,3)$ with apparent limiting frequencies $1 / 2,1 / 2$, whereas the trajectory $\left\{T^{k}(-21)\right\}$ occupies $B(1,3)$ for all $k \geq 0$.

Size of divergent trajectory k-th iterate

On the assumption that the limiting frequencies for divergent trajectories exist for the classes $B(j, d)$ and equal $1 / d$, the product formula for $T^{k}(x)$ allows us to us to deduce that

$$
\left|T^{k}(x)\right|^{1 / k} \rightarrow \frac{\left|m_{0} \cdots m_{d-1}\right|^{1 / d}}{d}
$$

If the limiting frequencies f_{i} exist, but are not uniform, this limit is replaced by

$$
\left|T^{k}(x)\right|^{1 / k} \rightarrow \frac{\left|m_{0}\right|^{f_{0}} \cdots\left|m_{d-1}\right|^{f_{d-1}}}{d}
$$

Some properties of T^{-1}

(i) $T^{-1}(B(j, m))$ is a disjoint union of N congruence classes $(\bmod m d)$. Moreover, if $\operatorname{gcd}\left(m_{i}, m\right)=1$ for $i=0, \ldots, d-1$, then $N=d$.
(ii) In the relatively prime case, the d^{α} cylinders

$$
B\left(i_{0}, d\right) \cap T^{-1}\left(B\left(i_{1}, d\right)\right) \cap \cdots \cap T^{-(\alpha-1)}\left(B\left(i_{\alpha-1}, d\right)\right)
$$

$0 \leq i_{0}<d, \ldots, 0 \leq i_{\alpha-1}<d$, are the d^{α} congruence classes $\bmod d^{\alpha}$.
(iii) In the relatively prime case, if

$$
A=B\left(j, d^{\alpha}\right) \text { and } B=B\left(k, d^{\beta}\right)
$$

then $T^{-K}(A) \cap B$ is a disjoint union of $d^{K-\beta}$ congruence classes $\bmod d^{K+\alpha}$, if $K \geq \beta$.

Extension of T to d-adic integers $\hat{\mathbb{Z}}_{d}$

We restrict ourselves to the relatively prime case.
T extends uniquely to a continuous mapping $T: \hat{\mathbb{Z}}_{d} \rightarrow \hat{\mathbb{Z}}_{d}$. This ring is a compact metric space under the d-adic metric and the " congruence" classes mod d^{α} form a basis for the open sets. There is a Haar measure μ on the additive group of $\hat{\mathbb{Z}}_{d}$, where $\mu\left(B\left(j, d^{\alpha}\right)\right)=1 / d^{\alpha}$.
Property (i) implies that $T^{-1}\left(B\left(j, d^{\alpha}\right)\right)$ is the disjoint union of d congruence classes ($\bmod d^{\alpha+1}$); hence T is measure-preserving:

$$
\mu\left(T^{-1}(A)\right)=\mu(A)
$$

if A is a measurable set in $\hat{\mathbb{Z}}_{d}$.

Applying the ergodic theorem to $T: \hat{\mathbb{Z}}_{d} \rightarrow \hat{\mathbb{Z}}_{d}$

Property (iii) of T implies the strongly-mixing property

$$
\lim _{K \rightarrow \infty} \mu\left(T^{-K}(A) \cap B\right)=\mu(A) \mu(B)
$$

for all measurable sets A and B in $\hat{\mathbb{Z}}_{d}$; hence T is ergodic:

$$
T^{-1}(A)=A \Longrightarrow \mu(A)=0 \quad \text { or } 1
$$

Applying the ergodic theorem to $B\left(j, d^{\alpha}\right)$ gives

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{k<N \mid T^{k}(x) \equiv j\left(\bmod d^{\alpha}\right)\right\}=\frac{1}{d^{\alpha}}
$$

for almost all $x \in \hat{\mathbb{Z}}_{d}$.

H. Möller's d-adic expansion for relatively prime T

For all $x \in \hat{\mathbb{Z}}_{d}$,

$$
x=\sum_{i=0}^{\infty} \frac{r_{i}(x) d^{i}}{m_{0}(x) \cdots m_{i}(x)}
$$

This tells us that the congruence classes mod d occupied by the iterates of x, in fact determine x.

A corresponding expansion is useful in a later example of a mapping $T: G F(2)[X] \rightarrow G F(2)[X]$.

Markov matrix arising from T

To introduce Markov chains, we need a probability space containing \mathbb{Z}, which we take to be the polyadic integers $\hat{\mathbb{Z}}$. Like the d-adic integers, this ring is a compact metric space that can be defined as a completion of \mathbb{Z}. The congruence class $\{x \in \hat{\mathbb{Z}} \mid x \equiv j(\bmod m)\}$ is also denoted by $B(j, m)$. Then our finitely additive measure μ on \mathbb{Z} extends to a probability Haar measure on $\hat{\mathbb{Z}}$.

Markov chain equation

Then the sequence of random set-valued functions
$Y_{K}(x)=B\left(T^{K}(x), m\right), x \in \hat{\mathbb{Z}}$, forms a Markov chain with m states $B(j, m), 0 \leq j<m$ and transition matrix $Q_{T}(m)=\left[q_{i j}(m)\right]$:

$$
\begin{aligned}
q_{i j}(m) & =\operatorname{Pr}\{(T(x) \in B(j, m) \mid x \in B(i, m)\} \\
& =\mu\left\{B(i, m) \cap T^{-1}(B(j, m))\right\} / \mu\{B(i, m)
\end{aligned}
$$

and Markov property:

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{0}(x)=B\left(i_{0}, m\right), \ldots Y_{K}(x)\right. & \left.=B\left(i_{K}, m\right) \mid Y_{0}(x)=B\left(i_{0}, m\right)\right) \\
& =q_{i_{0} i_{1}}(m) \cdots q_{i_{K-1} i_{K}}(m)
\end{aligned}
$$

Markov chain property continued

This last equation is a translation of the statement:
$B\left(i_{0}, m\right) \cap T^{-1}\left(B\left(i_{1}, m\right)\right) \cap \cdots \cap T^{-K}\left(B\left(i_{K}, m\right)\right)$ consists of $p_{i_{0} i_{1}}(m) \cdots p_{i_{K-1} i_{K}}(m)$ congruence classes $\left(\bmod m d^{K}\right)$, where $B(i, m) \cap T^{-1}(B(j, m))$ consists of $p_{i j}(m)$ congruence classes $(\bmod m d)$.
The equation also holds if $\operatorname{gcd}\left(m_{i}, d^{2}\right)=\operatorname{gcd}\left(m_{i}, d\right)$ for $0 \leq i<d$, provided d divides m.

If d divides m, a simple formula exists for $q_{i j}(m)$:

$$
q_{i j}(m)=\left\{\begin{array}{cl}
\frac{\operatorname{gcd}\left(m_{i}, d\right)}{d} & \text { if } T(i) \equiv j\left(\bmod \frac{m}{d} \operatorname{gcd}\left(m_{i}, d\right)\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

A correspondence

With respect to the Markov matrix $Q_{T}(m)$,
(a) \mathcal{C} is a closed set of states if $B \in \mathcal{C}$ and $q_{B B^{\prime}}>0$ imply $B^{\prime} \in \mathcal{C}$.
(b) \mathcal{C} is a positive recurrent set of states if it is a minimal closed set.

Then under the corrrespondence

$$
S_{\mathcal{C}}=B\left(j_{1}, m\right) \cup \cdots \cup B\left(j_{t}, m\right) \leftrightarrow \mathcal{C}=\left\{B\left(j_{1}, m\right), \ldots, B\left(j_{t}, m\right)\right\},
$$

where $0 \leq j_{1}<\cdots<j_{t}<m$,
(a) T-invariant sets $S_{\mathcal{C}}$ correspond to closed sets \mathcal{C},
(b) minimal T-invariant sets $S_{\mathcal{C}}$ (ergodic sets) correspond to positive recurrent classes \mathcal{C},

Structure of the ergodic sets $S_{\mathcal{C}}$

Let \mathcal{N}_{1} be the set of positive integers composed of primes which divide at least one m_{i}; also let \mathcal{N}_{2} be the set of positive integers which are relatively prime to each m_{i}.
Also, for $0 \leq i<j<d$ let

$$
\Delta_{i j}=r_{j}\left(d-m_{i}\right)-r_{i}\left(d-m_{j}\right)
$$

and $\Delta=\operatorname{gcd}_{0 \leq i<j<d} \Delta_{i j}$.
Let $S_{1}^{(m)}, \ldots, S_{r(m)}^{(m)}$ be the ergodic sets $(\bmod m)$. Then the following are all the ergodic sets:
(a) $\hat{\mathbb{Z}}$ if $m \in \mathcal{N}_{2}$ and $\operatorname{gcd}(m, \Delta)=1$;
(b) $S_{1}^{(m)}, \ldots, S_{r(m)}^{(m)}$, where $m \mid \Delta, m \in \mathcal{N}_{2}$;
(c) $S_{1}^{(m)}$, where $m \in \mathcal{N}_{1}$;
(d) any intersection of a set of type (b) and one of type (c).

A mapping property of ergodic sets

Suppose T is a mapping of relatively prime type.
If m divides n and $B\left(j_{1}, n\right) \cup \cdots \cup B\left(j_{t}, n\right)$ is an ergodic set $(\bmod n)$, then $B\left(j_{1}, m\right) \cup \cdots \cup B\left(j_{t}, m\right)$ is an ergodic set $(\bmod m)$.

A formula for the stationary distribution $\rho_{B}, B \in \mathcal{C}$

Let $p_{K i j}(m)$ be the number of congruence classes $\left(\bmod m d^{K}\right)$ contained in $B(i, m) \cap T^{-K}(B(j, m))$.
Then the cylinder equation implies

$$
\left[p_{K i j}\right]=\left[p_{i j}\right]^{K}=d^{K}\left\{Q_{T}(m)\right\}^{K}
$$

Hence

$$
\frac{\mu\left\{B(i, m) \cap T^{-K}(B(j, m))\right\}}{\mu\{B(i, m)\}}=p_{K i j}(m) / d^{K}=\left[\left\{Q_{T}(m)\right\}^{K}\right]_{i j} .
$$

Then if $B(j, m)$ belongs to \mathcal{C}, by the well-known limit result for Markov matrices, summing over $B(i, m) \in \mathcal{C}$, we get

$$
\rho_{B(j, m)}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{K<N} \frac{\mu\left\{S_{\mathcal{C}} \cap T^{-K}(B(j, m))\right\}}{\mu\left\{S_{\mathcal{C}}\right\}}
$$

Ergodic property

Let \mathcal{C} be a positive recurrent class and for each $B \in \mathcal{C}$, let ρ_{B} be the component of the unique stationary distribution over \mathcal{C}. Then $S_{\mathcal{C}}=\cup_{B \in \mathcal{C}}$ is T-invariant. Hence an ergodic theorem for Markov chains, applied to the $Y_{n}(x)$ restricted to $S_{\mathcal{C}}$, gives for a $B \in \mathcal{C}$:

$$
\operatorname{Pr}\left(\lim _{K \rightarrow \infty} \frac{1}{K} \#\left\{n ; n<K, Y_{n}(x)=B\right\}=\rho_{B}\right)=1
$$

In other words,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{k ; k<N, T^{k}(x) \in B\right\}=\rho_{B}
$$

for almost all $x \in S_{\mathcal{C}}$.

Transient class property

Let \mathcal{P} be the set of positive recurrent states. Then

$$
\operatorname{Pr}\left(Y_{n}(x) \in \mathcal{P} \text { for some } n>0\right)=1
$$

Hence we expect all divergent trajectories starting in a transient $B(j, m)$ to eventually enter some ergodic set $S_{\mathcal{C}}$, occupying each $B \in S_{\mathcal{C}}$ with limiting frequency $\rho(B)$.

Ergodic sets $(\bmod d)$

In the case of relatively prime T, there is only one positive recurrent class, $\mathcal{C}_{1}=\{B(0, d), \ldots, B(d-1, d)\}$. However for non relatively prime T, where $\operatorname{gcd}\left(m_{i}, d^{2}\right)=\operatorname{gcd}\left(m_{i}, d\right), 0 \leq i<d$, we may have several such classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ (and some transient states). We expect
(i) if $\prod_{B_{j} \in \mathcal{C}_{i}}\left(\frac{\left|m_{j}\right|}{d}\right)^{\rho_{B_{j}}}<1$, then all trajectories starting in $S_{\mathcal{C}_{i}}$ will enter a cycle.
(ii) if $\prod_{B_{j} \in \mathcal{C}_{i}}\left(\frac{\left|m_{j}\right|}{d}\right)^{\rho_{B_{j}}}>1$, then almost all trajectories starting in $S_{C_{i}}$ will be divergent.

Example 1 of $Q_{T}(m)$

The $5 x-3$ mapping. Here

$$
Q_{T}(3)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

There are two positive recurrent classes:

$$
\mathcal{C}_{1}=\{B(0,3)\} \text { and } \mathcal{C}_{2}=\{B(2,3), B(2,3)\}
$$

The stationary distribution for \mathcal{C}_{2} is $1 / 2,1 / 2$. Trajectory $\left\{T^{k}(-5)\right\}$ appears to diverge and occupies $B(1,3)$ and $B(2,3)$ with limiting frequencies $1 / 2,1 / 2$. Trajectory $\left\{T^{k}(-21)\right\}$ appears to diverge and occupies $B(0,3)$ for all $k \geq 0$.

Example 2 of $Q_{T}(m)$

A four-branched mapping:

$$
\begin{gathered}
T(x)=\left\{\begin{array}{cl}
3 x / 2 & \text { if } x \equiv 0(\bmod 4) \\
(x+1) / 2 & \text { if } x \equiv 1(\bmod 4) \\
x / 2+1 & \text { if } x \equiv 2(\bmod 4) \\
(5 x+3) / 2 & \text { if } x \equiv 3(\bmod 4)
\end{array}\right. \\
Q_{T}(4)=\left[\begin{array}{cccc}
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 1 / 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2
\end{array}\right]
\end{gathered}
$$

on interchanging rows and columns 2 and 3.

Example 2 continued

There are two positive recurrent classes:

$$
\mathcal{C}_{1}=\{B(0,4), B(2,4)\} \text { and } \mathcal{C}_{2}=\{B(1,4), B(3,4)\}
$$

The stationary vectors for both classes are ($1 / 2,1 / 2$). Then

$$
\begin{aligned}
& \prod_{B_{j} \in \mathcal{C}_{1}}\left(\frac{\left|m_{j}\right|}{d}\right)^{\rho_{B_{j}}}=(3 / 2)^{1 / 2}(1 / 2)^{1 / 2}<1 \\
& \prod_{B_{j} \in \mathcal{C}_{2}}\left(\frac{\left|m_{j}\right|}{d}\right)^{\rho_{B_{j}}}=(1 / 2)^{1 / 2}(5 / 2)^{1 / 2}>1
\end{aligned}
$$

Hence we expect all trajectories starting with an even integer to enter one of the cycles with starting values $0,2,4,-8,-32$, while most starting with an odd trajectory should diverge or else enter one of the cycles with starting values
$-1,1,3,-5,7,79,87,103,107,123$.

Example 3 of $Q_{T}(m)$

$$
\begin{gathered}
T(x)=\left\{\begin{array}{cc}
x / 3-1 & \text { if } x \equiv 0(\bmod 3) \\
(x+5) / 3 & \text { if } x \equiv 1(\bmod 3) \\
10 x-5 & \text { if } x \equiv 2(\bmod 3)
\end{array}\right. \\
Q_{T}(3)=\left[\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

$\left(Q_{T}(3)\right)^{2}$ is positive, so all states are positive recurrent, with stationary distribution $1 / 2,1 / 4,1 / 4$. Also

$$
(1 / 3)^{1 / 2}(1 / 3)^{1 / 4}(30 / 3)^{1 / 4}<1
$$

Hence we expect all trajectories to eventually cycle. In fact there appear to be five cycles, starting with values There appear to be five cycles, with starting values $0,5,17,-1,-4$.

Example 4 of $Q_{T}(m)$

$$
\begin{gathered}
T(x)=\left\{\begin{array}{cc}
x & \text { if } x \equiv 0(\bmod 3) \\
(7 x+2) / 3 & \text { if } x \equiv 1(\bmod 3) \\
(x-2) / 3 & \text { if } x \equiv 2(\bmod 3)
\end{array}\right. \\
Q_{T}(3)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] .
\end{gathered}
$$

There is one positive recurrent class $\mathcal{C}_{1}=\{B(0,3)\}$ and transient states $B(1,3)$ and $B(2,3)$.
Here $3 \mid x$ implies $3 \mid T(x)$; so once a trajectory enters the zero residue class mod 3, it remains there. Experimental evidence (http://www.numbertheory .org/php/markov.html) strikingly suggests that if $T^{k}(x) \equiv \pm 1(\bmod 3)$ for all $k \geq 0$, then the trajectory must eventually enter one of the cycles $-1,-1$ or $-2,-4,-2$. The author offers a $\$ 100$ (Australian) prize for a proof. This problem seems just as intractable as the $3 x+1$ problem, but is more spectacular.

The general mapping T

In 1983, George Leigh introduced a Markov chain $\left\{Y_{n}\right\}$, which enabled predictions to be made $(\bmod m), d \mid m$, for a wider class of T.

Let $m_{i}=b_{i} d_{i}$, where $b_{i} \in \mathbb{Z}, d_{i} \in \mathbb{N}$ and $\operatorname{gcd}\left(d, b_{i}\right)=1$, where d_{i} divides some power of $d, 0 \leq i<d$.
We define a sequence of random functions on $\hat{\mathbb{Z}}: x \rightarrow Y_{n}(x) \in \mathcal{B}$, the collection of congruence classes of the form $B(j, m k)$, where k divides some power of d :

The random set-valued functions

(a) $Y_{0}(x)=B(x, m)$;
(b) $Y_{n+1}(x)=B\left(T^{n+1}(x), m k_{n+1}\right)$, where

$$
k_{0}=1, \quad k_{n+1}=\frac{d_{j} k_{n}}{\operatorname{gcd}\left(d_{j} k_{n}, d\right)}
$$

and $T^{n}(x) \equiv j(\bmod d), 0 \leq j<d$.
Note that if $\operatorname{gcd}\left(m_{j}, d\right)=1$ for $0<j<d$ or $\operatorname{gcd}\left(m_{j}, d^{2}\right)=\operatorname{gcd}\left(m_{j}, d\right)\left(\right.$ i.e., $\left.d_{j} \mid d\right)$ for $0<j<d$, then $k_{n}=1$ for all n.

Markov property and Transition probabilities $q_{B B^{\prime}}$

We have

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{0}(x)=B_{0}, \ldots Y_{K}(x)\right. & \left.=B_{K} \mid Y_{0}(x)=B_{0}\right) \\
& =q_{B_{0} B_{1}} \cdots q_{B_{K-1} B_{K}}
\end{aligned}
$$

where the transition probabilities $q_{B B^{\prime}}$ are defined as follows:
Let $B=B(j, M), B^{\prime}=B\left(j^{\prime}, M^{\prime}\right), N=M d_{j} / d, N^{\prime}=\operatorname{lcm}(N, m)$.
Then

$$
\begin{aligned}
q_{B B^{\prime}} & =\operatorname{Pr}\left(Y_{n+1}(x)=B^{\prime} \mid Y_{n}(x)=B\right) \\
& = \begin{cases}\frac{\operatorname{gcd}\left(M d_{j} / m, d\right)}{d} & \text { if } B^{\prime}=B\left(T(j)+t N^{\prime} / N, N^{\prime}\right), \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Algorithm for computing the states reached and the $q_{B B^{\prime}}$

Starting with initial state $B=B(j, M)$ equal to one of $B(0, m), \ldots, B(m-1, m)$, form the N^{\prime} / N states

$$
B^{\prime}=B\left(T(j)+t N^{\prime} / N, N^{\prime}\right), 0 \leq t<N^{\prime} / N .
$$

These give the states B^{\prime} with $q_{B B^{\prime}}>0$; also $q_{B B^{\prime}}=N / N^{\prime}$.
If the process finishes and n states are produced, we get an $n \times n$ transition matrix $Q_{T}(m)$, for which the row corresponding to state B has N^{\prime} / N non-zero entries, each equal to N / N^{\prime}.

Criteria for cycling and divergence

Suppose that the Markov chain for $m=d$ has finitely many states. Also if \mathcal{C} be a positive recurrent class, for each $B \in \mathcal{C}$, let ρ_{B} be the corresponding limiting probability. Then
(a) Every divergent trajectory will eventually occupy each class B of some positive class \mathcal{C}, with limiting frequency ρ_{B}.
(b) Let \mathcal{C} be a positive recurrent class for the Markov chain $(\bmod d)$ and let

$$
p_{j}=\sum_{\substack{B \in \mathcal{C} \\ B \subseteq B(j, d)}} \rho_{B}
$$

Criteria for cycling and divergence continued

Then if

$$
\prod_{B(j, d) \in \mathcal{C}}\left(\frac{\left|m_{j}\right|}{d}\right)^{p_{j}}<1
$$

all trajectories starting in a $B(j, d) \in \mathcal{C}$ will eventually cycle. However if

$$
\prod_{B(j, d) \in \mathcal{C}}\left(\frac{\left|m_{j}\right|}{d}\right)^{p_{j}}>1
$$

almost all trajectories starting in a $B(j, d) \in \mathcal{C}$ will diverge.

Example 1 (Leigh 1983)

Let $T: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by

$$
T(x)=\left\{\begin{array}{cl}
x / 2 & \text { if } x \text { is even } \\
12 x+4 & \text { if } x \text { is odd }
\end{array}\right.
$$

Here $d=2, m_{0}=1, m_{1}=24$. Then $d_{0}=1, d_{1}=8$ and $\operatorname{gcd}\left(m_{1}, d_{1}^{2}\right)=\operatorname{gcd}(24,4)=4 \neq \operatorname{gcd}\left(m_{1}, d\right)=2$.
The recursive scheme for generating the states and positive transition probabilities:

$$
\begin{aligned}
B(0,2) & \rightarrow B(0,2) \\
& \rightarrow B(1,2) \\
B(1,2) & \rightarrow B(0,8) \\
B(0,8) & \rightarrow B(0,4) \\
B(0,4) & \rightarrow B(0,2) .
\end{aligned}
$$

States: $B(0,2), B(1,2), B(0,8), B(0,4)$.

Example 1 continued

$$
Q_{T}(2)=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$Q_{T}(2)^{6}>0$, so the states $B(0,2), B(1,2), B(0,8), B(0,4)$ form a positive recurrent class with stationary vector

$$
\left(\rho_{B(0,2)}, \rho_{B(1,2)}, \rho_{B(0,8)}, \rho_{B(0,4)}\right)=(2 / 5,1 / 5,1 / 5,1 / 5)
$$

Then with $p_{0}=\rho_{B(0,2)}+\rho_{B(0,8)}+\rho_{B(0,4)}$ and $p_{1}=\rho_{B(1,2)}$,

$$
\begin{aligned}
\left(m_{0} / d\right)^{p_{0}}\left(m_{1} / d\right)^{p_{1}} & =(1 / 2)^{2 / 5+1 / 5+1 / 5}(24 / 2)^{1 / 5} \\
& =(3 / 4)^{1 / 5}<1,
\end{aligned}
$$

so we expect all trajectories to enter cycles.

An example of Leigh (1986)

$$
T(x)=\left\{\begin{array}{cl}
x / 4 & \text { if } x \equiv 0(\bmod 8) \\
(x+1) / 2 & \text { if } x \equiv 1(\bmod 8) \\
20 x-40 & \text { if } x \equiv 2(\bmod 8) \\
(x-3) / 8 & \text { if } x \equiv 3(\bmod 8) \\
20 x+48 & \text { if } x \equiv 4(\bmod 8) \\
(3 x-13) / 2 & \text { if } x \equiv 5(\bmod 8) \\
(11 x-2) / 4 & \text { if } x \equiv 6(\bmod 8) \\
(x+1) / 8 & \text { if } x \equiv 7(\bmod 8)
\end{array}\right.
$$

We find there are 9 states in the Markov chain mod 8:
$B(0,8), B(1,8), B(2,8), B(3,8), B(4,8), B(5,8), B(6,8), B(7,8), B(0,32)$,

$$
\begin{aligned}
B(0,8) & \rightarrow B(0 ; 2 ; 4 ; 6,8) \\
B(1,8) & \rightarrow B(1 ; 5,8) \\
B(2,8) & \rightarrow B(0,32) \\
B(3,8) & \rightarrow B(0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7,8) \\
B(4,8) & \rightarrow B(0,32) \\
B(5,8) & \rightarrow B(1 ; 5,8) \\
B(6,8) & \rightarrow B(0 ; 2 ; 4 ; 6,8) \\
B(7,8) & \rightarrow B(0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7,8) \\
B(0,32) & \rightarrow B(0,8)
\end{aligned}
$$

An example of Leigh (1986) continued

There are two positive recurrent classes: $\mathcal{C}_{1}=\{B(1,8), B(5,8)\}$ and $\mathcal{C}_{2}=\{B(0,8), B(0,32), B(2,8), B(4,8), B(6,8)\}$, with transient states $B(3,8)$ and $B(7,8)$.
The limiting probabilities are $\rho_{1}=\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\rho_{2}=\left(\frac{3}{8}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)$, respectively.
We have $p_{1}=p_{5}=\frac{1}{2}$ and as

$$
\prod_{B_{j} \in \mathcal{C}_{1}}\left(\frac{\left|m_{j}\right|}{d}\right)^{p_{j}}=(1 / 2)^{1 / 2}(3 / 2)^{1 / 2}<1
$$

we expect every trajectory starting in $\mathcal{S}_{\mathcal{C}_{1}}=B(1,8) \cup B(5,8)$ to cycle, reaching one of $1,13,61,205,-11$.

An example of Leigh (1986) finished

Also $p_{0}=\frac{3}{8}+\frac{1}{4}=\frac{5}{8}$ and $p_{2}=p_{4}=p_{6}=\frac{1}{8}$. Then as

$$
\prod_{B_{j} \in \mathcal{C}_{2}}\left(\frac{\left|m_{j}\right|}{d}\right)^{p_{j}}=(1 / 4)^{5 / 8} 20^{1 / 8} 20^{1 / 8}(11 / 4)^{1 / 8}>1
$$

we expect most trajectories starting in $\mathcal{S}_{\mathcal{C}_{2}}=B(0,2)$ to diverge, displaying frequencies $\rho_{2}=\left(\frac{5}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)$ in the respective component congruence classes. For example, the trajectory starting with 46.

We found 8 cycles lying in $B(0,2)$, with starting values $0,10,158,3292,4244,-2,-12,-18$.

An example of Venturini (1992)

$$
T(x)=\left\{\begin{array}{cc}
2500 x / 6+1 & \text { if } x \equiv 0(\bmod 6) \\
(21 x-9) / 6 & \text { if } x \equiv 1(\bmod 6) \\
(x+16) / 6 & \text { if } x \equiv 2(\bmod 6) \\
(21 x-51) / 6 & \text { if } x \equiv 3(\bmod 6) \\
(21 x-72) / 6 & \text { if } x \equiv 4(\bmod 6) \\
(x+13) / 6 & \text { if } x \equiv 5(\bmod 6)
\end{array}\right.
$$

There are 9 states in the Markov chain $(\bmod 6)$:

$$
\begin{array}{ll}
B(0,6) & \rightarrow B(1,12), B(5,12), B(9,12) \\
B(1,6) & \rightarrow B(2,6), B(5,6) \\
B(2,6) & \rightarrow B(0,6), B(1,6), B(2,6), B(3,6), B(4,6), B(5,6) \\
B(3,6) & \rightarrow B(2,6), B(5,6) \\
B(4,6) & \rightarrow B(2,6), B(5,6) \\
B(5,6) & \rightarrow B(0,6), B(1,6), B(2,6), B(3,6), B(4,6), B(5,6) \\
B(1,12) & \rightarrow B(2,6) \\
B(5,12) & \rightarrow B(1,6), B(3,6), B(5,6) \\
B(9,12) & \rightarrow B(5,6)
\end{array}
$$

namely $B(0,6), B(1,6), B(2,6), B(3,6), B(4,6), B(5,6), B(1,12), B(5,12), B(9,12)$.

Venturini example finished

The 9 states form a positive recurrent class with limiting probabilities

$$
\rho=\left(\frac{18}{202}, \frac{20}{202}, \frac{53}{202}, \frac{20}{202}, \frac{18}{202}, \frac{55}{202}, \frac{6}{202}, \frac{6}{202}, \frac{6}{202}\right) .
$$

Noting that $B(1,12) \subseteq B(1,6), B(9,12) \subseteq B(3,6), B(5,12) \subseteq B(5,6)$, we get

$$
\begin{aligned}
& p_{0}=\rho_{B(0,6)}, \quad p_{1}=\rho_{B(1,12)}+\rho_{B(1,6)}, \quad p_{2}=\rho_{B(2,6)}, \\
& p_{3}=\rho_{B(9,12)}+\rho_{B(3,6)}, p_{4}=\rho_{B(4,6)}, \quad p_{5}=\rho_{B(5,12)}+\rho_{B(5,6)} .
\end{aligned}
$$

Then $\prod_{i=0}^{d-1}\left(m_{i} / d\right)^{p_{i}}<1$ and we expect all trajectories to eventually cycle. There appear to be two cycles, with starting values 2 and 6 .
http://www.numbertheory.org/php/venturini1.html

Example of infinitely many states (Chris Smyth 1993)

$$
T(x)=\left\{\begin{array}{cc}
3 x / 2 & \text { if } x \equiv 0(\bmod 2) \\
\lfloor 2 x / 3\rfloor & \text { if } x \equiv 1(\bmod 2) .
\end{array}\right.
$$

This can be regarded as a 6-branched mapping. The integer trajectories are much simpler to describe than the Markov chain:
(i) A non-zero even integer $2^{r}(2 c+1)$ is successively multiplied by $3 / 2$ until it reaches $3^{r+2}(2 c+1)=6 k+3$.
(ii) $6 k+3 \rightarrow 4 k+2 \rightarrow 6 k+3$.
(iii) $6 k+1 \rightarrow 4 k \rightarrow 6 k \rightarrow 9 k \rightarrow 6 k$.
(iv) $6 k+5 \rightarrow 4 k+3$ and unless we encounter 0 or -1 (fixed points), we must eventually reach $B(1,6)$ or $B(3,6)$.
With $m=6$, there are infinitely many states. e.g.,
$Y_{n}(0)=B\left(0,2 \cdot 3^{n+1}\right)$ for $n \geq 0$.

Other rings: $G F(2)[x]$

Here the conjectural picture for trajectories is not so clear. Here is an example of relatively prime type where $\left|m_{0} \cdots m_{|d|-1}\right|=|d|^{|d|}$, where $|f|=2^{\operatorname{deg} f}$.

$$
T(f)=\left\{\begin{array}{cl}
\frac{f}{x} & \text { if } f \equiv 0(\bmod x) \\
\frac{\left(x^{2}+1\right) f+1}{x} & \text { if } f \equiv 1(\bmod x)
\end{array}\right.
$$

Most trajectories appear to cycle. However the trajectory starting from $1+x+x^{3}$ exhibits a regularity which enabled its divergence to be proved: If $L_{n}=5\left(2^{n}-1\right)$, then

$$
T^{L_{n}}\left(1+x+x^{3}\right)=\frac{1+x^{3 \cdot 2^{n}+1}+x^{3 \cdot 2^{n}+2}}{1+x+x^{2}}
$$

The figure next page, shows the first 38 iterates.

Divergent trajectory $\left\{T^{k}\left(1+x+x^{3}\right)\right\}$ in $G F_{2}[x]$

The first 38 iterates

```
0:1101
1:11001
2:111101
3:1001001
4:01101101
5:1101101}
6:11011001
7:110111101
8:1101001001
9:11001101101
10:111111011001
11:1000010111101
12:01001001001001
13:1001001001001
14:01101101101101
15:1101101101101 \leftarrow
16:11011011011001
17:110110110111101
18:1101101101001001
19:11011011001101101
20:1101101111111011001
21:1101101000010111101
22:11011001001001001001
23:110111101101101101101
24:1101001011011011011001
25:11001100110110110111101
26:1111111111101101101001001
27:1000000001011011001101101
28:01000000100110111111011001
29:1000000100110111111011001
30:01000010111101000010111101
31:1000010111101000010111101
32:01001001001001001001001001
33:1001001001001001001001001
34:01101101101101101101101101
35:1101101101101101101101101 \leftarrow
36:11011011011011011011011001
37:110110110110110110110111101
```


Polynomials over GF(2) continued

There are infinitely many cycles, many of which have no recognisable pattern.

However the trajectories starting with

$$
g_{n}=\left(1+x^{2^{n}-1}\right) /(1+x)=1+x+\cdots+x^{2^{n}-2}
$$

possess symmetry and are purely periodic, with period-length 2^{n}.

Cyclic trajectory: $g_{4}(x)=\left(1+x^{15}\right) /(1+x) \in G F(2)[x]$

$$
\begin{aligned}
& 0: 111111111111111 \\
& 1: 1000000000000011 \\
& 2: 01000000000001111 \\
& 3: 1000000000001111 \\
& 4: 01000000000110011 \\
& 5: 1000000000110011 \\
& 6: 01000000011111111 \\
& 7: 1000000011111111 \\
& 8: 01000001100000011 \\
& 9: 1000001100000011 \\
& 10: 01000111100001111 \\
& 11: 1000111100001111 \\
& 12: 01011001100110011 \\
& 13: 1011001100110011 \\
& 14: 00111111111111111 \\
& 15: 0111111111111111 \\
& 16: 111111111111111
\end{aligned}
$$

Mappings of rings of algebraic integers

Let d be a non-unit in the ring O_{K} of integers of an algebraic number field K. Then O_{K} is composed of $\left|\operatorname{Norm}_{k}(d)\right|$ congruence classes $(\bmod d)$ and we can consider generalized $3 x+1$ mappings $T: O_{K} \rightarrow O_{K}$. The conjectural picture for trajectories is not entirely clear.
Example 1 (Leigh 1983). $T: \mathbb{Z}[\sqrt{2}] \rightarrow \mathbb{Z}[\sqrt{2}]$ is defined by

$$
T(\alpha)=\left\{\begin{array}{cl}
\alpha / \sqrt{2} & \text { if } \alpha \equiv 0(\bmod \sqrt{2}) \\
(3 \alpha+1) / \sqrt{2} & \text { if } \alpha \equiv 1(\bmod \sqrt{2})
\end{array}\right.
$$

Equivalently, write $\alpha=x+y \sqrt{2}$, where $x, y \in \mathbb{Z}$. Then

$$
T(x, y)=\left\{\begin{array}{cl}
(y, x / 2) & \text { if } x \equiv 0(\bmod 2) \\
(3 y,(3 x+1) / 2) & \text { if } x \equiv 1(\bmod 2)
\end{array}\right.
$$

There appear to be finitely many cycles with starting values

$$
0,1,-1,-5,-17,-2-3 \sqrt{2}, \quad-3-2 \sqrt{2}, \quad 9+10 \sqrt{2}
$$

Example 1 continued

An interesting feature is the presence of at least three one-dimensional T-invariant sets S_{1}, S_{2}, S_{3} in $\mathbb{Z} \times \mathbb{Z}$:
(i) $S_{1}: x=0$ or $y=0$,
(ii) $S_{2}: 2 x+y+1=0$ or $x+4 y+1=0$,
(iii) $S_{3}: x+y+1=0$ or $x+2 y+1=0$ or $x+2 y+2=0$.

Trajectories starting in S_{1} or S_{2} oscillate from one line to the other, while those starting in S_{3} oscillate between the first and either of the second and third.
Trajectories starting in S_{1} will cycle, as $T^{2}(x, 0)=(C(x), 0)$ and $T^{2}(0, y)=(0, C(y))$, where C denotes the $3 x+1$ mapping.

Example 2

$T: \mathbb{Z}[\sqrt{3}] \rightarrow \mathbb{Z}[\sqrt{3}]$ is defined by

$$
T(x)=\left\{\begin{array}{cl}
x / \sqrt{3} & \text { if } x \equiv 0(\bmod \sqrt{3}) \\
(x-1) / \sqrt{3} & \text { if } x \equiv 1(\bmod \sqrt{3}) \\
(4 x+1) / \sqrt{3} & \text { if } x \equiv 2(\bmod \sqrt{3})
\end{array}\right.
$$

There are at least 103 cycles. The trajectory starting with $-1-5 \sqrt{3}$ appears to be divergent. Divergent trajectories produce limiting frequencies approximating ($\cdot 27, \cdot 32, \cdot 40$) in the residue classes $0,1,2(\bmod \sqrt{3})$. Interpretation?

Website

- http://www.numbertheory.org/php/collatz.html

